Src Redox Regulation: There Is More Than Meets the Eye

  • Chiarugi, Paola (Department of Biochemical Sciences, University of Florence, and Centre for Research, Transfer and High Education 'Study at Molecular and Clinical Level of Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development on Novel Therapies')
  • Received : 2008.07.31
  • Accepted : 2008.09.02
  • Published : 2008.10.31

Abstract

Src-family kinases are critically involved in the control of cytoskeleton organization and in the generation of integrin-dependent signaling responses, inducing tyrosine phosphorylation of many signaling and cytoskeletal proteins. Activity of the Src family of tyrosine kinases is tightly controlled by inhibitory phosphorylation of a carboxy-terminal tyrosine residue, inducing an inactive conformation through binding with its SH2 domain. Dephosphorylation of C-ter tyrosine, as well as its deletion of substitution with phenylalanine in oncogenic Src kinases, leads to autophosphorylation at a tyrosine in the activation loop, thereby leading to enhanced Src activity. Beside this phophorylation/dephosphorylation circuitry, cysteine oxidation has been recently reported as a further mechanism of enzyme activation. Mounting evidence describes Src activation via its redox regulation as a key outcome in several circumstances, including growth factor and cytokines signaling, integrin-mediated cell adhesion and motility, membrane receptor cross-talk as well in cell transformation and tumor progression. Among the plethora of data involving Src kinase in physiological and pathophysiological processes, this review will give emphasis to the redox component of the regulation of this master kinase.

Keywords

References

  1. Akhand, A.A., Pu, M., Senga, T., Kato, M., Suzuki, H., Miyata, T., Hamaguchi, M., and Nakashima, I. (1999). Nitric oxide controls Src kinase activity through a sulfhydryl group modificationmediated Tyr-527-independent and Tyr-416-linked mechanism. J. Biol. Chem. 274, 25821-25826 https://doi.org/10.1074/jbc.274.36.25821
  2. Assoian, R.K. (1997). Control of the G1 phase cyclin-dependent kinases by mitogenic growth factors and the extracellular matrix. Cytokine Growth Factor Rev. 8, 165-170 https://doi.org/10.1016/S1359-6101(97)00011-7
  3. Ayrapetov, M.K., Wang, Y.H., Lin, X., Gu, X., Parang, K., and Sun, G. (2006). Conformational basis for SH2-Tyr(P)527 binding in src inactivation. J. Biol. Chem. 281, 23776-23784 https://doi.org/10.1074/jbc.M604219200
  4. Baker, M., Gamble, J., Tooze, R., Higgins, D., Yang, F.T., O'Brien, P.C., Coleman, N., Pingel, S., Turner, M., and Alexander, D.R. (2000). Development of T-Leukaemias in CD45 tyrosine phosphatase- deficient mutant Lck mice. EMBO J. 19, 4644-4654 https://doi.org/10.1093/emboj/19.17.4644
  5. Bell, E.L., and Chandel, N.S. (2007). Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem. 43, 17-27 https://doi.org/10.1042/BSE0430017
  6. Benhar, M., Engelberg, D., and Levitzki, A. (2002). ROS, stressactivated kinases and stress signaling in cancer. EMBO Rep. 3, 420-425 https://doi.org/10.1093/embo-reports/kvf094
  7. Bickers, D.R., and Athar, M. (2006). Oxidative stress in the pathogenesis of skin disease. J. Invest Dermatol. 126, 2565-2575 https://doi.org/10.1038/sj.jid.5700340
  8. Block, K., Eid, A., Griendling, K.K., Lee, D.Y., Wittrant, Y., and Gorin, Y. (2008). Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II. role in mesangial cell hypertrophy and fibronectin expression. J. Biol. Chem. 283, 24061-24076 https://doi.org/10.1074/jbc.M803964200
  9. Boggon, T.J., and Eck, M.J. (2004). Structure and regulation of Src family kinases. Oncogene 23, 7918-7927 https://doi.org/10.1038/sj.onc.1208081
  10. Catarzi, S., Biagioni, C., Giannoni, E., Favilli, F., Marcucci, T., Iantomasi, T., and Vincenzini, M.T. (2005). Redox regulation of platelet-derived-growth-factor-receptor: Role of NADPH-oxidase and C-Src tyrosine kinase. Biochim. Biophys. Acta 1745, 166- 175 https://doi.org/10.1016/j.bbamcr.2005.03.004
  11. Catarzi, S., Giannoni, E., Favilli, F., Meacci, E., Iantomasi, T., and Vincenzini, M.T. (2007). Sphingosine 1-phosphate stimulation of NADPH oxidase activity: Relationship with platelet-derived growth factor receptor and C-Src kinase. Biochim. Biophys. Acta 1770, 872-883 https://doi.org/10.1016/j.bbagen.2007.01.008
  12. Chen, Y.H., Pouyssegur, J., Courtneidge, S.A., and Obberghen- Schilling, E. (1994). Activation of Src family kinase activity by the G protein-coupled thrombin receptor in growth-responsive fibroblasts. J. Biol. Chem. 269, 27372-27377
  13. Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Ital. J. Biochem. 52, 28-32
  14. Chiarugi, P. (2005). PTPs versus PTKs: the redox side of the coin. Free Radic. Res. 39, 353-364 https://doi.org/10.1080/10715760400027987
  15. Chiarugi, P. (2008). From anchorage dependent proliferation to survival: Lessons from redox signalling. IUBMB Life 60, 301-307 https://doi.org/10.1002/iub.45
  16. Chiarugi, P., and Buricchi, F. (2007). Protein tyrosine phosphorylation and reversible oxidation: Two cross-talking posttranslation modifications. Antioxid Redox Signal. 9 1-24 https://doi.org/10.1089/ars.2007.9.1
  17. Chiarugi, P., and Cirri, P. (2003). Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 28, 509-514 https://doi.org/10.1016/S0968-0004(03)00174-9
  18. Chiarugi, P., and Fiaschi, T. (2007). Redox signalling in anchoragedependent cell growth. Cell Signal. 19, 672-682 https://doi.org/10.1016/j.cellsig.2006.11.009
  19. Cloutier, J.F., and Veillette, A. (1996). Association of inhibitory tyrosine protein kinase P50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 15, 4909-4918
  20. Cohen, P. (2002). Protein kinases-the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309-315 https://doi.org/10.1038/nrd773
  21. Cook, P.W., Pittelkow, M.R., Keeble, W.W., Graves-Deal, R., Coffey, R.J. Jr., and Shipley, G.D. (1992). Amphiregulin messenger RNA is elevated in psoriatic epidermis and gastrointestinal carcinomas. Cancer Res. 52, 3224-3227
  22. Cooper, J.A., and Howell, B. (1993). The when and how of Src regulation. Cell 73, 1051-1054
  23. Daulhac, L., Kowalski-Chauvel, A., Pradayrol, L., Vaysse, N., and Seva, C. (1999). Src-family tyrosine kinases in activation of ERK-1 and P85/P110-phosphatidylinositol 3-kinase by G/CCKB receptors. J. Biol. Chem. 274, 20657-20663 https://doi.org/10.1074/jbc.274.29.20657
  24. Duchene, J., Schanstra, J.P., Pecher, C., Pizard, A., Susini, C., Esteve, J.P., Bascands, J.L., and Girolami, J.P. (2002), A novel protein-protein interaction between a G protein-coupled receptor and the phosphatase SHP-2 is involved in bradykinin-induced inhibition of cell proliferation. J. Biol. Chem. 277, 40375-40383 https://doi.org/10.1074/jbc.M202744200
  25. Fan, C., Li, Q., Ross, D., and Engelhardt, J.F. (2003). Tyrosine phosphorylation of I Kappa B Alpha activates NF Kappa B through a redox-regulated and C-Src-dependent mechanism following hypoxia/reoxygenation. J. Biol. Chem. 278, 2072-2080 https://doi.org/10.1074/jbc.M206718200
  26. Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., Giordano, S., Pani, G., and Galeotti, T. (2006). Prometastatic signaling by C-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25, 3689-3698 https://doi.org/10.1038/sj.onc.1209409
  27. Finkel, T. (1998). Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248-253 https://doi.org/10.1016/S0955-0674(98)80147-6
  28. Finkel, T. (2006). Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signal. 8, 1857-1863 https://doi.org/10.1089/ars.2006.8.1857
  29. Frame, M.C. (2002). Src in cancer: Deregulation and consequences for cell behaviour. Biochim. Biophys. Acta 1602, 114- 130
  30. Frame, M.C., Fincham, V.J., Carragher, N.O., and Wyke, J.A. (2002). V-Src's hold over actin and cell adhesions. Nat. Rev. Mol. Cell. Biol. 3, 233-245 https://doi.org/10.1038/nrm779
  31. Frisch, S.M., and Francis, H. (1994). Disruption of epithelial cellmatrix interactions induces Apoptosis. J. Cell Biol. 124, 619-626 https://doi.org/10.1083/jcb.124.4.619
  32. Ghose, R., Shekhtman, A., Goger, M.J., Ji, H., and Cowburn, D. (2001). A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat. Struct. Biol. 8, 998-1004 https://doi.org/10.1038/nsb1101-998
  33. Gianni, D., Bohl, B., Courtneidge, S.A., and Bokoch, G.M. (2008). The involvement of the tyrosine kinase C-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase- 1. Mol. Biol. Cell 19, 2984-2994 https://doi.org/10.1091/mbc.E08-02-0138
  34. Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G., and Chiarugi, P. (2005). Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol. Cell. Biol. 25, 6391-6403 https://doi.org/10.1128/MCB.25.15.6391-6403.2005
  35. Giannoni, E., Buricchi, F., Grimaldi, G., Parri, M., Cialdai, F., Taddei, M.L., Raugei, G., Ramponi, G., and Chiarugi, P. (2008). Redox regulation of Anoikis: Reactive oxygen species as essential mediators of cell survival. Cell Death Differ. 15, 867-878 https://doi.org/10.1038/cdd.2008.3
  36. Gilmore, A.P. (2005). Anoikis. Cell Death Differ. 15, 1473-1477
  37. Gonfloni, S., Williams, J.C., Hattula, K., Weijland, A., Wierenga, R.K., and Superti-Furga, G. (1997). The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. EMBO J. 16, 7261-7271 https://doi.org/10.1093/emboj/16.24.7261
  38. Gupta, A., Rosenberger, S.F., and Bowden, G.T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20, 2063-2073 https://doi.org/10.1093/carcin/20.11.2063
  39. Haklar, G., Sayin-Ozveri, E., Yuksel, M., Aktan, A.O., and Yalcin, A.S. (2001). Different kinds of reactive oxygen and nitrogen species were detected in colon and breast tumors. Cancer Lett. 165, 219-224 https://doi.org/10.1016/S0304-3835(01)00421-9
  40. Hamaguchi, M., Yamagata, S., Thant, A.A., Xiao, H., Iwata, H., Mazaki, T., and Hanafusa, H. (1995). Augmentation of metalloproteinase (Gelatinase) activity secreted from Rous Sarcoma virus- infected cells correlates with transforming activity of Src. Oncogene 10, 1037-1043
  41. Hermiston, M.L., Xu, Z., and Weiss, A. (2003). CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107-137 https://doi.org/10.1146/annurev.immunol.21.120601.140946
  42. Hunter, T., and Sefton, B.M. (1980). Transforming gene product of Rous Sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA 77, 1311-1315
  43. Hurley, T.R., Hyman, R., and Sefton, B.M. (1993). Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphorylation of the Lck, Fyn, and C-Src tyrosine protein kinases. Mol. Cell. Biol. 13,
  44. Irby, R.B., Mao, W., Coppola, D., Kang, J., Loubeau, J.M., Trudeau, W., Karl, R., Fujita, D.J., Jove, R., and Yeatman, T.J. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet. 21, 187-190 https://doi.org/10.1038/5971
  45. Kagan, H.M., and Li, W. (2003). Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J. Cell Biochem. 88, 660-672 https://doi.org/10.1002/jcb.10413
  46. Kato, M., Iwashita, T., Takeda, K., Akhand, A.A., Liu, W., Yoshihara, M., Asai, N., Suzuki, H., Takahashi, M., and Nakashima, I. (2000). Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic Ret tyrosine kinases. Mol. Biol. Cell 11, 93-101 https://doi.org/10.1091/mbc.11.1.93
  47. Klimova, T., and Chandel, N.S. (2008). Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 15, 660- 666 https://doi.org/10.1038/sj.cdd.4402307
  48. Koch, C.A., Anderson, D., Moran, M.F., Ellis, C., and Pawson, T. (1991). SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668-674 https://doi.org/10.1126/science.1708916
  49. Kodama, H., Fukuda, K., Takahashi, T., Sano, M., Kato, T., Tahara, S., Hakuno, D., Sato, T., Manabe, T., Konishi, F., et al. (2002). Role of EGF receptor and Pyk2 in endothelin-1-induced ERK activation in Rat cardiomyocytes. J. Mol. Cell Cardiol. 34, 139- 150 https://doi.org/10.1006/jmcc.2001.1496
  50. Kodama, H., Fukuda, K., Takahashi, E., Tahara, S., Tomita, Y., Ieda, M., Kimura, K., Owada, K.M., Vuori, K., and Ogawa, S. (2003). Selective involvement of P130Cas/Crk/Pyk2/c-Src in endothelin-1-induced JNK activation. Hypertension 41, 1372-1379 https://doi.org/10.1161/01.HYP.0000069698.11814.F4
  51. Laczko, R., Szauter, K.M., Jansen, M.K., Hollosi, P., Muranyi, M., Molnar, J., Fong, K.S., Hinek, A., and Csiszar, K. (2007). Active Lysyl oxidase (LOX) correlates with focal adhesion kinase (FAK)/paxillin activation and migration in invasive astrocytes. Neuropathol. Appl. Neurobiol. 33, 631-643 https://doi.org/10.1111/j.1365-2990.2007.00858.x
  52. Lambeth, J.D., Kawahara, T., and Diebold, B. (2007). Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43, 319-331 https://doi.org/10.1016/j.freeradbiomed.2007.03.028
  53. Le Gall, M., Chambard, J.C., Breittmayer, J.P., Grall, D., Pouyssegur, J., and Obberghen-Schilling, E. (2000). The P42/ P44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol. Biol. Cell 11, 1103-1112 https://doi.org/10.1091/mbc.11.3.1103
  54. Leu, T.H., Su, S.L., Chuang, Y.C., and Maa, M.C. (2003). Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem. Pharmacol. 66, 2323-2331 https://doi.org/10.1016/j.bcp.2003.08.017
  55. Li, A.E., Ito, H., Rovira, I.I., Kim, K.S., Takeda, K., Yu, Z.Y., Ferrans, V.J., and Finkel, T. (1999). A role for reactive oxygen species in endothelial cell Anoikis. Circ. Res. 85, 304-310 https://doi.org/10.1161/01.RES.85.4.304
  56. Lluis, J.M., Buricchi, F., Chiarugi, P., Morales, A., and Fernandez- Checa, J.C. (2007). Dual role of mitochondrial reactive oxygen species in hypoxia signaling: Activation of nuclear factor- {Kappa}B Via C-SRC and oxidant-dependent cell death. Cancer Res. 67, 7368-7377 https://doi.org/10.1158/0008-5472.CAN-07-0515
  57. Loza-Coll, M.A., Perera, S., Shi, W., and Filmus, J. (2005). A transient increase in the activity of Src-family kinases induced by cell detachment delays Anoikis of intestinal epithelial cells. Oncogene 24, 1727-1737 https://doi.org/10.1038/sj.onc.1208379
  58. Luttrell, D.K., and Luttrell, L.M. (2004), Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23, 7969-7978 https://doi.org/10.1038/sj.onc.1208162
  59. Luttrell, L.M., Hawes, B.E., van Biesen, T., Luttrell, D.K., Lansing, T.J., and Lefkowitz, R.J. (1996). Role of C-Src tyrosine kinase in G protein-coupled receptor- and Gbetagamma subunitmediated activation of mitogen-activated protein kinases. J. Biol. Chem. 271, 19443-19450 https://doi.org/10.1074/jbc.271.32.19443
  60. Marikovsky, M., Breuing, K., Liu, P.Y., Eriksson, E., Higashiyama, S., Farber, P., Abraham, J., and Klagsbrun, M. (1993). Appearance of Heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc. Natl. Acad. Sci. USA 90, 3889-3893
  61. Meredith, J.E. Jr., Fazeli, B., and Schwartz, M.A. (1993). The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953- 961 https://doi.org/10.1091/mbc.4.9.953
  62. Minetti, M., Mallozzi, C., and Di Stasi, A.M. (2002). Peroxynitrite activates kinases of the Src family and upregulates tyrosine phosphorylation signaling. Free Radic. Biol. Med. 33, 744-754 https://doi.org/10.1016/S0891-5849(02)00891-2
  63. Montezano, A.C., Callera, G.E., Yogi, A., He, Y., Tostes, R.C., He, G., Schiffrin, E.L., and Touyz, R.M. (2008). Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through C-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc. Biol. 25, 1511-1518
  64. Moro, L., Venturino, M., Bozzo, C., Silengo, L., Altruda, F., Beguinot, L., Tarone, G., and Defilippi, P. (1998). Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion- dependent cell survival. EMBO J. 17, 6622-6632 https://doi.org/10.1093/emboj/17.22.6622
  65. Moro, L., Dolce, L., Cabodi, S., Bergatto, E., Boeri, E.E., Smeriglio, M., Turco, E., Retta, S.F., Giuffrida, M.G., Venturino, M., et al. (2002). Integrin-induced epidermal growth factor (EGF) receptor activation requires C-Src and P130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277, 9405-9414 https://doi.org/10.1074/jbc.M109101200
  66. Nakamura, K., Hori, T., Sato, N., Sugie, K., Kawakami, T., and Yodoi, J. (1993). Redox regulation of a Src family protein tyrosine kinase P56lck in T cells. Oncogene 8, 3133-3139
  67. Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., and Nakagawa, H. (1991). CSK: a protein-tyrosine kinase involved in regulation of Src family kinases. J. Biol. Chem. 266, 24249-24252
  68. Paige, L.A., Nadler, M.J., Harrison, M.L., Cassady, J.M., and Geahlen, R.L. (1993). Reversible palmitoylation of the proteintyrosine kinase P56lck. J. Biol. Chem. 268, 8669-8674
  69. Parsons, S.J., and Parsons, J.T. (2004), Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909 https://doi.org/10.1038/sj.onc.1208160
  70. Payne, S.L., Fogelgren, B., Hess, A.R., Seftor, E.A., Wiley, E.L., Fong, S.F., Csiszar, K., Hendrix, M.J., and Kirschmann, D.A. (2005). Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res. 65, 11429-11436 https://doi.org/10.1158/0008-5472.CAN-05-1274
  71. Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., et al. (2005). Rac1b and reactive oxygen species mediate MMP- 3-induced EMT and genomic instability. Nature 436, 123-127 https://doi.org/10.1038/nature03688
  72. Redondo, P.C., Salido, G.M., Pariente, J.A., and Rosado, J.A. (2004). Dual effect of hydrogen peroxide on store-mediated calcium entry in human platelets. Biochem. Pharmacol. 67, 1065- 1076
  73. Resh, M.D. (1999). Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1-16 https://doi.org/10.1016/S0167-4889(99)00075-0
  74. Rhee, S.G. (1999). Redox signaling: Hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31, 53-59 https://doi.org/10.1038/emm.1999.9
  75. Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., and Woo, H.A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17, 183-189 https://doi.org/10.1016/j.ceb.2005.02.004
  76. Rosado, J.A., Redondo, P.C., Salido, G.M, Gomez-Arteta, E., Sage, S.O., and Pariente, J.A. (2004). Hydrogen peroxide generation induces Pp60src activation in human platelets: evidence for the involvement of this pathway in store-mediated calcium entry. J. Biol. Chem. 279, 1665-1675 https://doi.org/10.1074/jbc.M307963200
  77. Rytomaa, M., Lehmann, K., and Downward, J. (2000). Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene 19, 4461-4468 https://doi.org/10.1038/sj.onc.1203805
  78. Sabe, H., Hamaguchi, M., and Hanafusa, H. (1997). Cell to substratum adhesion is involved in V-Src-induced cellular protein tyrosine phosphorylation: Implication for the adhesion-regulated protein tyrosine phosphatase activity. Oncogene 14, 1779-1788 https://doi.org/10.1038/sj.onc.1201022
  79. Saito, S., Frank, G.D., Mifune, M., Ohba, M., Utsunomiya, H., Motley, E.D., Inagami, T., and Eguchi, S. (2002). Ligand-independent trans-activation of the platelet-derived growth factor receptor by reactive oxygen species requires protein kinase C-delta and C-Src. J. Biol. Chem. 277, 44695-44700 https://doi.org/10.1074/jbc.M208332200
  80. Schafer, B., Gschwind, A., and Ullrich, A. (2004). Multiple G-proteincoupled Receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23, 991-999 https://doi.org/10.1038/sj.onc.1207278
  81. Senga, T., Miyazaki, K., Machida, K., Iwata, H., Matsuda, S., Nakashima, I., and Hamaguchi, M. (2000). Clustered cysteine residues in the kinase domain of V-Src: critical role for protein stability, cell transformation and sensitivity to herbimycin A. Oncogene 19, 273-279 https://doi.org/10.1038/sj.onc.1203296
  82. Shin, E.A., Kim, K.H., Han, S.I., Ha, K.S., Kim, J.H., Kang, K.I., Kim, H.D., and Kang, H.S. (1999). Arachidonic acid induces the activation of the stress-activated protein kinase, membrane ruffling and H2O2 production via a small GTPase Rac1. FEBS Lett. 452, 355-359 https://doi.org/10.1016/S0014-5793(99)00657-2
  83. Sicheri, F., Moarefi, I., and Kuriyan, J. (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602-609 https://doi.org/10.1038/385602a0
  84. Slomiany, B.L., and Slomiany, A. (2004). Src-kinase-dependent epidermal growth factor receptor transactivation in salivary mucin secretion in response to beta-adrenergic G-proteincoupled receptor activation. Inflammopharmacology 12, 233- 245 https://doi.org/10.1163/1568560042342329
  85. Smart, J.E., Oppermann, H., Czernilofsky, A.P., Purchio, A.F., Erikson, R.L., and Bishop, J.M. (1981). Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous Sarcoma virus (Pp60v-Src) and its normal cellular homologue (Pp60c-Src). Proc. Natl. Acad. Sci. USA 78, 6013-6017
  86. Su, J., Muranjan, M., and Sap, J. (1999). Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin- mediated responses in fibroblasts. Curr. Biol. 9, 505-511 https://doi.org/10.1016/S0960-9822(99)80234-6
  87. Sun, G., Ramdas, L., Wang, W., Vinci, J., McMurray, J., and Budde, R.J. (2002). Effect of autophosphorylation on the catalytic and regulatory properties of protein tyrosine kinase Src. Arch. Biochem. Biophys. 397, 11-17 https://doi.org/10.1006/abbi.2001.2627
  88. Sun, G., Sharma, A.K., and Budde, R.J. (1998). Autophosphorylation of Src and Yes blocks their inactivation by Csk phosphorylation. Oncogene 17, 1587-1595 https://doi.org/10.1038/sj.onc.1202076
  89. Szatrowski, T.P., and Nathan, C.F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794-798
  90. Taddei, M.L., Parri, M., Mello, T., Catalano, A., Levine, A.D., Raugei, G., Ramponi, G., and Chiarugi, P. (2007). Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 9, 469-481 https://doi.org/10.1089/ars.2006.1392
  91. ten Freyhaus, H., Huntgeburth, M., Wingler, K., Schnitker, J., Baumer, A.T., Vantler, M., Bekhite, M.M., Wartenberg, M., Sauer, H., and Rosenkranz, S. (2006). Novel Nox inhibitor VAS2870 attenuates PDGF-Dependent smooth muscle cell chemotaxis, but Not proliferation. Cardiovasc Res. 71, 331-341 https://doi.org/10.1016/j.cardiores.2006.01.022
  92. Trouba, K.J., Hamadeh, H.K., Amin, R.P., and Germolec, D.R. (2002). Oxidative stress and its role in skin disease. Antioxid Redox Signal 4, 665-673 https://doi.org/10.1089/15230860260220175
  93. Ushio-Fukai, M., Griendling, K.K., Becker, P.L., Hilenski, L., Halleran, S., and Alexander, R.W. (2001). Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 21, 489-495 https://doi.org/10.1161/01.ATV.21.4.489
  94. van Vliet, C., Bukczynska, P.E., Puryer, M.A., Sadek, C.M., Shields, B.J., Tremblay, M.L., and Tiganis, T. (2005). Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat. Immunol. 6, 253-260 https://doi.org/10.1038/ni1169
  95. von Wichert, G., Jiang, G., Kostic, A., De Vos, K., Sap, J., and Sheetz, M.P. (2003). RPTP-Alpha acts as a transducer of mechanical force on Alphav/Beta3-integrin-cytoskeleton linkages. J. Cell Biol. 161, 143-153 https://doi.org/10.1083/jcb.200211061
  96. Waters, C.M., Connell, M.C., Pyne, S., and Pyne, N.J. (2005). CSrc is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Cell Signal 17, 263-277 https://doi.org/10.1016/j.cellsig.2004.07.011
  97. Wei, L., Yang, Y., Zhang, X., and Yu, Q. (2004). Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from Anoikis. Oncogene 23, 9052-9061 https://doi.org/10.1038/sj.onc.1208091
  98. Xu, W., Harrison, S.C., and Eck, M.J. (1997). Three-dimensional structure of the tyrosine kinase C-Src. Nature 385, 595-602 https://doi.org/10.1038/385595a0