채취산지별 물푸레나무 종자의 온도에 대한 발아반응 비교

Comparison of Seed Germination Response to Temperature by Provenances in Fraxinus rhynchophylla

  • 최충호 (경기도산림환경연구소) ;
  • 서병수 (전북대학교 농업생명과학대학) ;
  • 탁우식 (국립산림과학원 산림유전자원부) ;
  • 조경진 (국립산림과학원 산림유전자원부) ;
  • 김장수 (국립산림과학원 산림유전자원부) ;
  • 한상억 (국립산림과학원 산림유전자원부)
  • Choi, Chung Ho (Gyeonggi-do Forest Environment Research Institute) ;
  • Seo, Byeong Soo (Faculty of Forest Science, Chonbuk National University) ;
  • Tak, Woo Sik (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Cho, Kyung Jin (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Chang Soo (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sang Urk (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 투고 : 2008.07.07
  • 심사 : 2008.11.18
  • 발행 : 2008.12.30

초록

산지별 물푸레나무 종자의 산지이동시 생태적 조건에 대한 적응력을 예측하고 직파조림 및 포지양묘 시 최대의 발아효과를 얻고자 $5{\sim}35^{\circ}C$의 범위에서 온도에 대한 발아반응을 조사한 결과, 발아율, 발아속도에서 채취산지간 차이가 관찰되었다. 인제에서 채취한 종자가 저온($5{\sim}15^{\circ}C$)에서 발아율이 우세하였으며, 고온($30{\sim}35^{\circ}C$)에서는 강릉의 종자가 우세하였다. 또한 발아율 값에 의한 2차 회귀식 모델에서 도출된 기준온도, 최대온도 및 적정온도는 4개 산지간 다양하게 나타났는데, 인제가 가장 낮았고 강릉이 가장 높게 나타났다. 발아속도에 근거한 주요 온도 추정 모델 역시 산지간에 다양하게 나타났다. 기준온도의 경우 횡성이 가장 낮았으며 강릉이 가장 높았다. 최대온도 및 적정온도는 인제에서 가장 낮게 나타났으며, 역시 강릉에서 가장 높게 나타나 발아에 영향을 미치는 주요 온도들의 경우 저온산지보다 비교적 고온인 산지에서 더 높게 나타남을 알 수 있었다. 유묘생산을 위한 파종시 주요 온도를 고려할 때 2차 회귀모델과 선형모델 중 어느 것을 선택할 지는 유묘생산시의 목표에 달려있다. 즉 유묘생산량에 초점을 두었다면 2차 회귀모델을, 출현속도나 균일성에 초점을 두었다면 선형모델을 선택함이 바람직할 것이다.

The germination responses of Fraxinus rhynchophylla seeds collected from four provenances to constant temperature were investigated over the range $5{\sim}35^{\circ}C$. Difference among seeds in percentage and rate of germination and cardinal temperatures was observed. The seeds from Inje had high germination percentage at low temperature ($5{\sim}15^{\circ}C$) whereas those from Gangneung had high germination percentage at high temperature ($30{\sim}35^{\circ}C$). Three cardinal temperatures viz., the base ($T_b$), the maximum ($T_m$) and the optimum ($T_o$) for germination percentage and germination rate varied among four provenances. $T_b$, $T_m$ and $T_o$ for F. rhynchophylla seed germination as estimated by the quadratic models were the lowest in Inje while those were the highest in Gangneung. The cardinal temperatures ($T_b$, $T_m$ and $T_o$) were estimated by linear sub- and supra-optimal models for germination rate as a function of temperature response. $T_b$ was the lowest in Hoengseong while that was the highest in Gangneung. $T_m$ and $T_o$ were the lowest in Inje while those were also the highest in Gangneung. That is, the seeds from the provenance where the annual mean temperature was high had the higher cardinal temperatures ($T_b$, $T_m$ and $T_o$) as compared to seeds from the provenance where the annual mean temperature was low.

키워드

참고문헌

  1. 국립산림과학원. 2004. 임업용 종자감정 요령. 국립산림과학원예규 제131호. pp.5-10.
  2. 김창민, 신민교, 안덕균, 이경순. 1998. 중약대사전. 도서출판 정담. 7, 8: 4319-4321, 5194-5199.
  3. 김태욱. 1999. 한국의 수목. 교학사. p.537.
  4. 산림청. 2007. 임업통계연보. 산림청. p.212.
  5. 이호준, 조길임, 김용욱, 류병혁. 1995. 분포지역에 따른 애기수영(Rumex acetocella) 종자의 발아반응. 한국생태학회지 18(3): 353-366.
  6. 이호준. 1979. 질경이(Plantago asiatica L.)의 생태형에 관한 연구. 효성여자대학교 연구논문집 21: 3-45.
  7. 호준. 1991. 분포지역에 따른 서양민들레(Taraxacum officinale Weber) 종자의 발아습성의 지리적 변이. 건국대학교 기초과학연구소 이학논집 16: 75-83.
  8. 환경부. 2007. 기후변화에 의한 한반도 영향 예측 사례. http://www.me.go.kr/webdata/bodo070406P.hwp.
  9. 田川日出夫. 1982. 植物の生態. 共立出版. 東京. 191p.
  10. 靑葉高. 1967. Allium屬花きの種子發芽及ほす溫度特性の影響. 國藝學會雜誌 36: 333-338.
  11. Baskin, J.M. and Baskin, C.C. 1985. The annual dormancy cycle in buried weed seeds: A Continuum. Bio-Science 35: 492-498. https://doi.org/10.2307/1309817
  12. Baskin, J.M. and Baskin, C.C. 1988. Germination ecophysiology of herbaceous plant species in a temperature region. Amer J. Bot. 72: 286-305.
  13. Benowicz, A., El-Kassaby, Y.A., Guy, R.D. and Ying, C.C. 2000. Sitka Alder (Alnus sinuata RYDB.) Genetic diversity in germination, frost hardiness and growth attributes. Silvae Genet. 49: 206-212.
  14. Benowicz, A., Guy, R., Carlson, M.R. and El-Kassaby, Y.A. 2001. Genetic variation among paper birch (Betula papyrifera MARSH.) populations in germination, frost hardiness, gas exchange and growth. Silvae Genet. 50: 7-13.
  15. Bewley, J.D. and Black, M. 1982. Physiology and biochemistry of seeds in relation to germination. 2nd Ed. Springer-Verlag press. Berlin. Heidelberg and New York. 375p.
  16. Bewley, J.D. and Black, M. 1994. Seeds: Physiology of Development and Germination. Plenum Perse. New York. pp. 211.
  17. Chauhan, S., Negi, A.K. and Todaria, N.P. 1996. Effect of provenance variation and temperature on seed germination of Alnus nepalensis. Plant Physiology and Biochemistry 23: 94-95.
  18. Grime, J.P., G. Mason, A.V. Curtis, J. Rodman, S.R. Band, M.A.G. Mawforth, A.M. Neal and S. Shaw. 1981. Comparative study of germination characteristics in a local flora, Ecology 69: 1017-1059. https://doi.org/10.2307/2259651
  19. Gera, M., Gera, N. and Ginwal, H.S. 2000. Seed trait variation in Dalbergia sissoo Roxb. Seed Sci. Technol. 28: 467-475.
  20. Gutterman, Y. 2000. Maternal effects on seed during development. In: Fenner M (ed.). Seeds. The Ecology of Regeneration in Plant Communities. 2nd ed. CABI publishing. Wallingford/New York. pp. 59-84.
  21. Hardegree, S.P. 2006a. Predicting germination responses to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann. Bot. 97: 1115-1125. https://doi.org/10.1093/aob/mcl071
  22. Hardegree, S.P. 2006b. Predicting germination responses to temperature. III. Model validation under field-variable temperature conditions. Ann. Bot. 98: 827-834. https://doi.org/10.1093/aob/mcl163
  23. Hardegree, S.P. and Winstral, A.H. 2006. Predicting germination responses to temperature. II. Three-dimensional regression, statistical griding and interative-probit optimization using measured and interpolated-subpopulation data. Ann. Bot. 98: 403-410. https://doi.org/10.1093/aob/mcl112
  24. Heydecker, W. 1977. Stress and seed germination: An agronomic view, In A.K. Elsevier (ed.). The physiology and biochemistry of seed dormancy and germination. North Holland and Biomedical Press. Amsterdam. pp. 237-282.
  25. Isik, K. 1986. Altitudinal variation in Pinus brutia Ten: Seed and seedling characteristics. Silvae Genet. 35: 58-67.
  26. Marisol, T.B. and Johnson, B.L. 2008. Seed germination response of cuphea to temperature. Industrial Crops and Products 27: 17-21. https://doi.org/10.1016/j.indcrop.2007.05.004
  27. Mkonda, A., Lungu, S., Maghembe, J.A. and Mafongoya, P.L. 2003. Fruit- and seed-germination charactieristics of Strychnos cocculoides an indigenous fruit tree from natural population in Zambia. Agroforest. Syst. 58: 25-31. https://doi.org/10.1023/A:1025454231002
  28. OECD Trade and Agriculture Directorate. 2007. OECD scheme for the certification of forest reproductive material moving in international trade. Paris. p.26.
  29. Peacock, J.T. and McMillan, C. 1965. Ecotypic differentiation in Prosopis (mesquite). J. Ecol. Syst. 16: 179-214.
  30. Ren, J. and Tao, L. 2004. Effects of different pre-sowing seed treatments on germination of 10 Calligonum species. For. Ecol. and Manag. 195: 291-300. https://doi.org/10.1016/j.foreco.2004.01.046
  31. Sivakumar, V., Parthiban, K.T., Singh, B.G., Gnanambal, V.S., Anandalakshmi, R. and Geetha, S. 2002. Variability in drupe characters and their relationship on seed germination in teak (Tectona grandis L.F.). Silvae Genet. 51: 232-237.
  32. Sterns, F. and Olson, J. 1958. Interactions of phytoperiod and temperature affecting seed germination in Tsuga canadensis. Amer. J. Bot. 45: 53-58. https://doi.org/10.2307/2438321
  33. Tekrony, D.M. 2003. Precision is an essential component in seed vigor testing. Seed Sci. Technol. 31: 435-447. https://doi.org/10.15258/sst.2003.31.2.20
  34. Thompsen, K.A. and Kjaer, E.D. 2002. Variation between single tree progenies of Fagus sylvatica in seed traits, and its implications for effective population numbers. Silvae Genet. 51: 183-190.
  35. Thompson, P.A. 1970. Characterization of the germination responses to temperature of species and ecotypes. Nature 225: 827-831. https://doi.org/10.1038/225827a0
  36. Todaria, N.P. and Negi, A.K. 1995. Effect of elevation and temperature on seed germination of some Himalayan tree species. Plant Physiology and Biochemistry 22: 178-182.
  37. Washitani, I. and Takenaka, A. 1984. Mathematics of the seed germination dependency on time and temperature. Plant, Cell and Envirion. 7: 359-362.