DOI QR코드

DOI QR Code

Characteristics of the release of chromium, copper, and arsenic from CCA-treated wood exposed to the natural environment

자연환경에 노출된 CCA 방부목재로부터 크롬, 구리 및 비소의 용탈 특성

  • Koo, Jinhoi (Department of Environmental Science, Kangwon National University) ;
  • Song, Byeongyeol (Department of Environmental Science, Kangwon National University) ;
  • Kim, Hekap (Department of Environmental Science, Kangwon National University)
  • 구진회 (강원대학교 자연과학대학 환경과학과) ;
  • 송병열 (강원대학교 자연과학대학 환경과학과) ;
  • 김희갑 (강원대학교 자연과학대학 환경과학과)
  • Received : 2007.08.08
  • Accepted : 2007.12.02
  • Published : 2008.02.25

Abstract

This study was conducted to investigate the characteristics of the leaching of metal components from CCA-treated wood during outdoor exposure. CCA-treated wood specimens were placed horizontally or buried vertically into the soil, and then exposed to the natural environment for a year. Wood samples were collected from the side of the horizontal wood specimens using a drill and saw dust samples were collected at the end of the exposure. Soil samples were also obtained around the wood specimens and at different depths of the posts. Wood and soil samples were analyzed for metals using an atomic absorption spectrometer. Monthly metal concentrations varied greatly and more metals were released when wood specimens were exposed vertically than horizontally. Arsenic was released from the wood by 80 % of the intial content. In addition, more leaching was observed from the zone below the ground than above the ground, and soil around the posts was contaminated with metals released from CCA-treated wood.

이 연구에서는 chromated copper arsenate(CCA)로 처리된 방부목재가 실외환경에 노출될 때 금속들의 용탈 특성을 알아보았다. CCA 방부목재를 수평 또는 토양에 묻은 채 수직으로 1년 동안 노출시켰다. 수평으로 노출된 목재의 옆면에서 매월 드릴로 목재 시료를 채취하였고, 노출이 종료된 후에는 톱밥 시료를 채취했다. 수직으로 노출시킨 목재 주변에서는 표토를, 그리고 깊이별로 토양 시료를 채취하였다. 채취한 시료는 원자흡광광도계(AAS)로 분석하였다. 목재 표면 부위에서의 농도는 강우에 따라 매월 변하였고, 목재가 수평으로 노출된 경우보다는 수직으로 노출된 경우 금속들이 더 많이 용탈되었다. 비소의 경우에는 노출 전에 비해 80 % 정도까지 용탈되었다. 또한 지상보다는 지하 부위에서 더 많이 용탈되었으며, 수직으로 세운 말뚝 주변의 토양은 금속으로 오염되었다.

Keywords

References

  1. American Wood Preservers' Association (AWPA), American Wood Preservers' Association Book of Standards, Granbury, TX, USA, 1999
  2. 박정규, 신용승, 김희갑, 김동진, 이용석, 황인영, 이 동흡, 김윤관 외 17, 비소계 목재방부제(CCA)의 통 합적 위해성평가기술 개발, 환경부, 2006
  3. D. E. Stilwell and K. D. Gorny, Bull. Environ. Contam. Toxicol., 58, 2-9(1997)
  4. J. A. Hingston, C. D. Collins, R. J. Murphy and J. N. Lester, Environ. Pollut., 111, 53-66(2001) https://doi.org/10.1016/S0269-7491(00)00030-0
  5. T. Chirenje, L. Q. Ma, C. Clark and M. Reeves, Environ. Pollut., 124, 407-417(2003) https://doi.org/10.1016/S0269-7491(03)00046-0
  6. T. Townsend, H. Solo-Gabriele, T. Tolaymat, K. Stook and N. Hosein, Soil Sediment Contam., 12, 779-798(2003) https://doi.org/10.1080/714037715
  7. S. Lebow, D. Foster and J. Evans, Bull. Environ. Contam. Toxicol., 72, 225-232(2004) https://doi.org/10.1007/s00128-003-9055-y
  8. H. Kim, D.-J. Kim, J.-G. Park, Y. S. Shin, I. Y. Hwang and Y. K. Kim, J. Kor. Soc. Soil Groundwat. Environ., 11, 54-64(2006)
  9. H. Kim, D.-J. Kim, J. Koo, J.-G. Park and Y.-C. Jang, Sci. Total Environ., 374, 273-281(2007) https://doi.org/10.1016/j.scitotenv.2006.12.047
  10. U. S. CPSC, Evaluation of the Effectiveness of Surface Coatings in Reducing Dislodgeable Arsenic from New Wood Pressure-Treated with Chromated Copper Arsenate (CCA), May, 2005
  11. U.S. EPA, Evaluation of Effectiveness of Coatings in Reducing Dislodgeable Arsenic, Chromium, and Copper from CCA Treated Wood, May, 2005
  12. J. B. Jones, Laboratory Guide for Conducting Soils Tests and Plant Analysis, CRC Press, 2001
  13. E. Bendor and A. Banin, Soil Sci. Plant Anal., 20, 1675-1696(1989) https://doi.org/10.1080/00103628909368175
  14. G. J. Bouyoucos, Soil Sci., 4, 225-228(1936).
  15. U.S. EPA, EPA Method 3051A-Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, 1998
  16. S. Lebow, D. Foster and P. Lebow, Forest Prod. J., 54, 81-88(2004)
  17. D. Stilwell, M. Toner and B. Sawhney, Sci. Total Environ., 312, 123-131(2003) https://doi.org/10.1016/S0048-9697(03)00195-5
  18. J. J. Morrell and J. Huffman, Wood Fiber Sci., 36, 119- 128(2004).
  19. B. Robinson, M. Greven, S. Green, S. Sivakumaran, P. Davidson and B. Clothier, Sci. Total Environ., 364, 113-123(2006) https://doi.org/10.1016/j.scitotenv.2005.07.012
  20. L. D. Tyler and M. B. McBride, Soil Sci., 134, 198-205 (1982) https://doi.org/10.1097/00010694-198209000-00009
  21. E. Tipping, Coll. Surf. A: Physicochem. Eng. Asp., 73, 117-131(1993) https://doi.org/10.1016/0927-7757(93)80011-3
  22. B. M. Sass and D. Rai, Inorg. Chem., 26, 2228-2232 (1987) https://doi.org/10.1021/ic00248a007
  23. P. H. Masscheleyn, R. D. Delaune and W. H. Patrick, Environ. Sci. Technol., 25, 1414-1419(1991). https://doi.org/10.1021/es00020a008