A Low Complexity and A Low Latency Systolic Arrays for Multiplication in GF($2^m$) Using An Optimal Normal Basis of Type II

타입 II ONB를 이용한 GF($2^m$)상의 곱셈에 대한 낮은 복잡도와 작은 지연시간을 가지는 시스톨릭 어레이

  • Published : 2008.01.31

Abstract

Using the self duality of an optimal normal basis(ONB) of type II, we present a bit parallel and bit serial systolic arrays over GF($2^m$) which has a low hardware complexity and a low latency. We show that our multiplier has a latency m+1 and the basic cell of our circuit design needs 5 latches(flip-flops). Comparing with other arrays of the same kinds, we find that our array has significantly reduced latency and hardware complexity.

타입 II ONB(optimal normal basis)의 자기쌍대성(self duality)을 이용하여 낮은 하드웨어 복잡도와 작은 지연시간을 가지는 GF($2^m$)상의 비트 패러럴, 시리얼 시스톨릭 어레이를 제안하였다. 제안된 곱셈기는 m+1의 지연시간을 가지며 각 셀은 5개의 래치(플립-플롭)로 구성된다. 제안된 어레이는 다른 어레이와 비교하여 공간 복잡도와 지연시간을 줄임을 알 수 있다.

Keywords

References

  1. E.R. Berlekamp, "Bit-serial Reed-Solomon encoders," IEEE Trans. Inform. Theory, vol. 28, pp. 869-874, 1982 https://doi.org/10.1109/TIT.1982.1056591
  2. M. Wang and I.F. Blake, "Bit serial multiplication in finite fields," SIAM J. Disc. Math., vol. 3, pp. 140-148, 1990 https://doi.org/10.1137/0403012
  3. S. Gao, J. von zur Gathen and D. Panario, "Gauss periods and fast exponentiation in finite fields," Lecture Notes in Computer Science, vol. 911, pp. 311-322, 1995
  4. B. Sunar and C.K. Koc, "An efficient optimal normal basis type II multiplier," IEEE Trans. Computers, vol 50, pp. 83-87, 2001 https://doi.org/10.1109/12.902754
  5. A. Reyhani-Masoleh and M.A. Hasan, "A new construction of Massey-Omura parallel multiplier over GF$(2^{m})$," IEEE Trans. Computers, vol. 51, pp. 511-520, 2002 https://doi.org/10.1109/TC.2002.1004590
  6. A.J. Menezes, Applications of finite fields, Kluwer Academic Publisher, 1993
  7. C.L. Wang and J.L. Lin, "Systolic array implementation of multipliers for finite fields GF$(2^{m})$," IEEE Trans. Circuits Syst., vol. 38, pp. 796-800, 1991 https://doi.org/10.1109/31.135751
  8. C.S. Yeh, I.S. Reed and T.K. Troung, "Systolic multipliers for finite fields GF$(2^{m})$," IEEE Trans. Computers, vol. C-33, pp. 357-360, 1984 https://doi.org/10.1109/TC.1984.1676441
  9. S.T.J. Fenn, M. Benaissa and D. Taylor, "Dual basis systolic multipliers for GF$(2^{m})$," IEE Proc. Comput. Digit. Tech., vol. 144, pp. 43-46, 1997 https://doi.org/10.1049/ip-cdt:19970660
  10. C.Y. Lee, E.H. Lu and J.Y. Lee, "Bit parallel systolic multipliers for GF$(2^{m})$ fields defined by all one and equally spaced polynomials," IEEE Trans. Computers, vol. 50, pp. 385-393, 2001 https://doi.org/10.1109/12.926154
  11. C.W. Wei, "A systolic power sum circuit for GF$(2^{m})$," IEEE Trans. Computer, vol. 43, pp. 226-229, 1994 https://doi.org/10.1109/12.262128
  12. S.K. Jain, L. Song and K.K. Parhi, "Efficient semisystolci architectures for finite field arithmetic," IEEE Trans. VLSI Syst., vol. 6, pp. 101-113, 1998 https://doi.org/10.1109/92.661252
  13. J.H. Guo and C.L. Wang, "Systolic array implementation of Euclid's algorithm for inversion and division in GF$(2^{m})$," IEEE Trans. Computers, vol. 47, pp. 1161-1167, 1998 https://doi.org/10.1109/12.729800
  14. S. Kwon and H. Ryu, "Efficient bit serial multiplication using optimal normal bases of type II in GF$(2^{m})$," Lecture Notes in Computer Science, vol. 2433, pp. 300-308, 2002
  15. C.Y. Lee, E.H. Lu and L.F. Sun, "Low complexity bit parallel systolic architecture for computing $AB^{2}+C$ in a class of finite field GF$(2^{m})$," IEEE Trans. Circuits Syst. II, vol. 48, pp. 519-523, 2001 https://doi.org/10.1109/82.938363
  16. W.C. Tsai, C.B. Shung and S.J. Wang, "Two systolic architectures for modular multiplication," IEEE Trans. VLSI Syst., vol. 8, pp. 103-107, 2000 https://doi.org/10.1109/92.820767
  17. T. Itoh and S. Tsujii, "Sturcture of parallel multipliers for a class of finite fields GF$(2^{m})$," Information and computation, vol. 83, pp. 21-40, 1989 https://doi.org/10.1016/0890-5401(89)90045-X
  18. C.K. Koc and B. Sunar, "Low complexity bit paraller canonical and normal basis multipliers for a class of finite fields," IEEE Trans. Computers, vol. 47, pp. 353-356, 1998 https://doi.org/10.1109/12.660172
  19. C. Paar, P. Fleischmann and P. Roelse, "Efficient multiplier architectures for Galois fields $GF(2^{4n})$," IEEE Trans. Computers, vol. 47, pp. 162-170, 1998 https://doi.org/10.1109/12.663762
  20. H. Wu, M.A. Hasan, I.F. Blake and S. Gau, "Finite field multiplier using redundant representation," IEEE Trans. Computers, vol. 51, pp. 1306-1316, 2002 https://doi.org/10.1109/TC.2002.1047755
  21. G.B. Agnew, R.C. Mullin, I. Onyszchuk and S.A. Vanstone, "An implementation for a fast public key cryptosystem," J. Cryptology, vol. 3, pp. 63-79, 1991