DOI QR코드

DOI QR Code

Load cycling에 따른 소수성 실험용 상아질 접착제의 nanoleakage 양상

The nanoleakage patterns of experimental hydrophobic adhesives after load cycling

  • 손서진 (서울대학교 치의학대학원 치과보존학교실) ;
  • 장주혜 (서울대학교 치의학대학원 치과보존학교실) ;
  • 강석호 (서울대학교 치의학대학원 치과보존학교실) ;
  • 유현미 (성균관대학교 의과대학 삼성서울병원 치과보존과) ;
  • 조병훈 (서울대학교 치의학대학원 치과보존학교실) ;
  • 손호현 (서울대학교 치의학대학원 치과보존학교실)
  • Sohn, Suh-Jin (Department of Conservative Dentistry, School of Dentistryl, Seoul National University) ;
  • Chang, Ju-Hae (Department of Conservative Dentistry, School of Dentistryl, Seoul National University) ;
  • Kang, Suk-Ho (Department of Conservative Dentistry, School of Dentistryl, Seoul National University) ;
  • Yoo, Hyun-Mi (Department of Conservative Dentistry, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, School of Dentistryl, Seoul National University) ;
  • Son, Ho-Hyun (Department of Conservative Dentistry, School of Dentistryl, Seoul National University)
  • 발행 : 2008.01.31

초록

본 연구의 목적은 두 가지 실험용 소수성 상아질 접착제와 전통적인 3-step 상아질 접착제의 nanoleakage 양상을 load cycling 전, 후에 비교하여 상아질 접착제의 내구성을 예측해 보고자 하는 것이다. 두 가지 실험용 소수성 상아질 접착제 즉, 에탄을 포함 상아질 접착제, 메탄을 포함 상아질 접착제를 만들었다. 대구치 30개의 치관부 3분의 1을 절단하고 임의로 3군으로 나누어 각각 Scotchbond Multi-Purpose (3M ESPE, St. Paul, MN, USA), 에탄올 포함 상아질 접착제 및 메탄을 포함 상아질 접착제를 사용하여 상아질 접착 후, 복합레진으로 치관부를 수복하였다. 각각의 접착 시스템을 Load cycling 여부에 따라 두 군으로 나누고 각각의 치아를 접착 계면에 수직으로, 약 2.0 mm의 두께가 되도록 절단하여 치아마다 2개의 시편을 얻어 각 군 당10개의 시편을 얻었다. 시편을 50 % ammoniacal silver nitrate를 이용하여 염색한 후 주사전자현미경을 이용하여 혼성층의 nanoleakage를 관찰하였다. 은 침착의 분포는 image analysis software (Scion Image Beta 4.03, Scion Corp., Frederick, MD, USA)를 이용하여 gray value로 계산하였고 이 원분산 분석법으로 통계처리 하였다. 3종의 상아질 접착제에서 모두 nanoleakage가 관찰되었으나, 에탄올 포함 상아질 접착제와 메탄을 포함 상아질 접착제에서 Scotchbond Multi-Purpose 보다 적은 양의 nanoleakage 가 관찰되었다 (p < .0001). 각각의 상아질 접착제에서 load cycling에 따른 nanoleakage 양상의 변화는 관찰되지 않았다. 이상의 결과에서 친수성기를 줄이고 소수성기를 극대화 한 실험용 상아질 접착제가 접착 계면의 내구성 향상에 도움을 줄 수 있을 것으로 사료된다.

The purpose of this study was: (1) to compare nanoleakage patterns of a conventional 3-step etch and rinse adhesive system and two experimental hydrophobic adhesive systems and (2) to investigate the change of the nanoleakage patterns after load cycling. Two kinds of hydrophobic experimental adhesives, ethanol containing adhesive (EA) and methanol containing adhesive (MA), were prepared. Thirty extracted human molars were embedded in resin blocks and occlusal thirds of the crowns were removed. The polished dentin surfaces were etched with a 35 % phosphoric acid etching gel and rinsed with water. Scotchbond Multi-Purpose (MP), EA and MA were used for bonding procedure. Z-250 composite resin was built-up on the adhesive-treated surfaces. Five teeth of each dentin adhesive group were subjected to mechanical load cycling. The teeth were sectioned into 2 mm thick slabs and then stained with 50 % ammoniacal silver nitrate. Ten specimens for each group were examined under scanning electron microscope in backscattering electron mode. All photographs were analyzed using image analysis software. Three regions of each specimen were used for evaluation of the silver uptake within the hybrid layer. The area of silver deposition was calculated and expressed in gray value. Data were statistically analyzed by two-way ANOVA and post-hoc testing of multiple comparisons was done with the Scheffe's test. Silver particles were observed in all the groups. However, silver particles were more sparsely distributed in the EA group and the MA group than in the MP group (p < .0001). There were no changes in nanoleakage patterns after load cycling.

키워드

참고문헌

  1. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849-853, 1955 https://doi.org/10.1177/00220345550340060801
  2. Wang Y, Spencer P. Evaluation of the interface between one-bottle adhesive systems and dentin by Goldner's trichrome. Am J Dent 18:66-72, 2005
  3. Spencer P, Wang Y, Katz JL. Identification of collagen encapsul-ation at the dentin/adhesive inter-face. J Adhes Dent 6:91-95, 2004
  4. Pashley DH, Ciucchi B, Sano H, Horner JA. Permeability of dentin to adhesive agents. Quintessence Int 24:618-631, 1993
  5. Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res 62:447-456, 2002 https://doi.org/10.1002/jbm.10364
  6. Armstrong SR, Vargas MA, Fang Q, Laffoon JE. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1- step dentin bonding system through 15-month water storage. J Adhes Dent 5:47-56, 2003
  7. Tay FR, Pashley DH, Suh BI, Carvalho RM, Itthagarun A. Single-step adhesives are permeable membranes. J Dent 30:371-382, 2002 https://doi.org/10.1016/S0300-5712(02)00064-7
  8. Hashimoto M, Ohno H, Sano H, Kaga M, Oguchi H. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 24:3795-3803, 2003 https://doi.org/10.1016/S0142-9612(03)00262-X
  9. Fukuda K, Nezu T, Terada Y. The effects of alcoholic com-pounds on the stability of type I collagen studied by differential scanning calorimetry. Dent Mater J 19:221-228, 2000 https://doi.org/10.4012/dmj.19.221
  10. Perdigao J, Frankenberger R. Effect of solvent and rewetting time on dentin adhesion. Quintessence Int 32:385-390, 2001
  11. Tay FR, Pashley DH, Yoshiyama M. Two modes of nanoleakage expression in single-step adhesives. J Dent Res 81:472-476, 2002 https://doi.org/10.1177/154405910208100708
  12. Tay FR, Pashley DH. Water treeing-a potential mechanism for degradation of dentin adhesives. Am J Dent 16:6-12, 2003
  13. Tay FR, Hashimoto M, Pashley DH, Peters MC, Lai SC, Yiu CK, Cheong C Aging affects two modes of nanoleakage expression in bonded dentin. J Dent Res 82:537-541, 2003 https://doi.org/10.1177/154405910308200710
  14. Okuda M, Pereira PN, Nakajima M, Tagami J. Relationship between nanoleakage and long-term durability of dentin bonds. Oper Dent 26:482-490, 2001
  15. Sano H. Microtensile testing, nanoleakage, and biodegradation of resin-dentin bonds. J Dent Res 85:11-14, 2006 https://doi.org/10.1177/154405910608500102
  16. Sano H, Yoshiyama M, Ebisu S, Burrow MF, Takatsu T, Ciucchi B, Carvalho R, Pashley DH. Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper Dent 20:160-167, 1995
  17. Sano H, Yoshikawa T, Pereira PN, Kanemura N, Morigami M, Tagami J, Pashley DH. Long-term durability of dentin bonds made with a self-etching primer, in vivo. J Dent Res 78:906-911, 1999 https://doi.org/10.1177/00220345990780041101
  18. Sano H, Shono T, Takatsu T, Hosoda H. Microporous dentin zone beneath resin-impregnated layer. Oper Dent 19:59-64, 1994
  19. Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hybrid layer. Oper Dent 20:18-25, 1995
  20. Maciel KT, Carvalho RM, Ringle RD, Preston CD, Russell CM, Pashley DH. The effects of acetone, ethanol, HEMA, and air on the stiffness of human decalcified dentin matrix. J Dent Res 75:1851-1858, 1996 https://doi.org/10.1177/00220345960750110601
  21. Nakabayashi N, Watanabe A, Gendusa NJ. Dentin adhesion of 'modified' 4-META/MMA-TBB resin: function of HEMA. Dent Mater 8:259-264, 1992 https://doi.org/10.1016/0109-5641(92)90096-U
  22. Pashley EL, Zhang Y, Lockwood PE, Rueggeberg FA, Pashley DH. Effects of HEMA on water evaporation from water-HEMA mixtures. Dent Mater 14:6-10, 1998 https://doi.org/10.1016/S0109-5641(98)00003-7
  23. Bedran-de-Castro AK, Pereira PN, Pimenta LA, Thompson JY. Effect of thermal and mechanical load cycling on nanoleakage of Class II restorations. J Adhes Dent 6:221-226, 2004
  24. Bedran-de-Castro AK, Pereira PN, Pimenta LA, Thompson JY. Effect of thermal and mechanical load cycling on microtensile bond strength of a total-etch adhesive system. Oper Dent 29:150-156, 2004
  25. Anderson DJ. Measurement of stress in mastication. II. J Dent Res 35:671-673, 1956 https://doi.org/10.1177/00220345560350050301
  26. Ausiello P, Davidson CL, Cascone P, DeGee AJ, Rengo S. Debonding of adhesively restored deep Class II MOD restorations after functional loading. Am J Dent 12:84-88, 1999
  27. Hakimeh S, Vaidyanathan J, Houpt ML, Vaidyanathan TK, Von Hagen S. Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. J Prosthet Dent 83:194- 203, 2000 https://doi.org/10.1016/S0022-3913(00)80012-8
  28. da cunha Mello FS, Feilzer AJ, de Gee AJ, Davidson CL. Sealing ability of eight resin bonding systems in a Class II restoration after mechanical fatiguing. Dent Mater 13:372-376, 1997 https://doi.org/10.1016/S0109-5641(97)80109-1
  29. Prati C, Tao L, Simpson M, Pashley DH. Permeability and microleakage of Class II resin composite restorations. J Dent 22:49-56, 1994 https://doi.org/10.1016/0300-5712(94)90147-3
  30. Li H, Burrow MF, Tyas MJ. The effect of load cycling on the nanoleakage of dentin bonding systems. Dent Mater 18:111-119, 2002 https://doi.org/10.1016/S0109-5641(01)00029-X
  31. Yap A, Stokes AN, Pearson GJ. An in vitro microleakage study of a new multi-purpose dental adhesive system. J Oral Rehabil 23:302-308, 1996 https://doi.org/10.1111/j.1365-2842.1996.tb00857.x

피인용 문헌

  1. The effect of priming etched dentin with solvent on the microtensile bond strength of hydrophobic dentin adhesive vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.042
  2. The effect of the removal of chondroitin sulfate on bond strength of dentin adhesives and collagen architecture vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.211