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H,, Multi-Step Prediction for Linear Discrete-Time Systems:
A Distributed Algorithm

Hao-qian Wang, Huan-shui Zhang, and Hong Hu

Abstract: A new approach to H,, multi-step prediction is developed by applying the innovation
analysis theory. Although the predictor is derived by resorting to state augmentation, nevertheless,
it is completely different from the previous works with state augmentation. The augmented state
here is considered just as a theoretical mathematic tool for deriving the estimator. A distributed
algorithm for the Riccati equation of the augmented system is presented. By using the
reorganized innovation analysis, calculation of the estimator does not require any augmentation.
A numerical example demonstrates the effect in reducing computing burden.
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1. INTRODUCTION

The estimation problem of a stochastic process,
given observations of a related random process, is
encountered in many areas of science and engineering
[1]. There are two well-known approaches for such
problems. One is based on the L, or H, criterion,
where the estimators are designed to minimize the
mean squared error, for example, the Wiener filtering
and Kalman formulation. Another is based on the H.,
performance. An H,, estimator is to minimize the
maximum energy gain from the disturbances to the
estimation errors; see [2,3] for the continuous-time
case and [4] for the discrete-time one, and is
applicable to situations where no statistical
information of input noises is available. Recently,
much of the attention has been paid on the H,
estimate problem and some improvements have been
made (see, e.g., [5-9] and the references therein).

Of the two different approaches, the H, estimate
theory, including filtering, smoothing and prediction,
has been the most researched in past decades. The
estimation under H,, performance, inspired by Zames
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[10], has been extensively studied since 1980 and has
been approached by numerous authors using various
techniques. It should be pointed out that previous
works are mainly concentrated on the filtering and the
one-step prediction, whereas less attention has been
paid to the more complicated multi-step prediction
problem. The H, prediction problem, where an
estimator of the current state is sought based on
measurements in a past infinite interval, was
addressed through system augmentation. However, the
multi-step prediction process would be computational
too expensive. The H, prediction problem has been
studied in [11] without resorting to system
augmentation for the first time, and the estimator is
obtained by minimizing quadratic functions.
Unfortunately, the derivation is complex, and the
existence condition of the /-step predictor is not easy
to be verified.

In this paper, we aim to present a new approach to
the H, multi-step ahead prediction problem by
introducing a reorganized innovation sequence and the
projection formula in an indefinite space, i.e., the so-
called Krein space. The key behind this simplicity is
the presentation of a distributed algorithm for the
Riccati equation of the augmented system.

Notations: Whenever the Krein space elements and
the Euclidean space elements satisfy the same set of
constraints, we shall denote them by the same letters
with the former identified by bold faces and the latter
by normal faces.

2. PROBLEM STATEMENT

We consider the following linear system for the H,,
estimation problem

x(f+1) = ®,x(t) + T u(?), (N
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y(t) = Hx(t) +v(1), (2)
2(t) = Lx(2), (3)

where x(1)eR”, y(H)eR™", u(t)eR", v(f) e R™ and
z(t)e R? represent the state, measurement output,

input noise, measurement noise and the signal to be
estimated, respectively. It is assumed that the input
and measurement noises are deterministic signals and
are from L,[0,N], where N is a time-horizon of the
estimation problem under investigation.

The H,, [-step prediction problem can be stated as
follows.

Given scalar vy >0, positive integer [ and

observations ] t.—_l , find an estimator Z(¢|7-!
Y =0

of z(¢), if exist, such that the following inequality is

satisfied
N
SEt =1 -z [2(t]t~1) - 2(0)]
sup =0 < YZ,

(xg,u,v)#0 THO Xy + Zu (t)u(t) + z v (t)V(t)
“4)

and TII, is a given positive
definite matrix which reflects the relative uncertainty

where x; = x(0),

of the initial state to the input and measurement noises.

3. H, MULTI-STEP PREDICTION

For the sake of comparison, we first review the
existing results for multiple-step prediction with
augmentation, and then present the new results with
distributed algorithm.

3.1. Multi-step prediction by augmentation
In view of (4), the cost function for multi-step
prediction game is

N
J() = x4 Wg'xg + > u” (t)u(r)
=0 (%)

+Zv t-Dve-1)- y_ZZv )W, (1),
t=0
where v(r - 1) =0, </ (I > 0),
—z(f).

Firstly, we recall some related results obtained in
[12]. The predictor is derived with the help of the
following augmented state space

and v,(t)=2(t|t-1])

X, (1 +1) =@, (0)x, () + T, (Du(?), (6)
Yt —1)=H,()x, (6) +v(t - 1), N
Lix(t) = L, ()x,(2), ®)

where
xg(t)z[xT @ (-1 - z)T
[®, 0 - 0 O] [T,
I, 0 0 0 0
0= 0 I, = 0 0,T,0)=|0] 10
0 0 I, 0 0|
0 0<r<l
Ha(t)={[0 0 H_ )21 an
La(t)=[Lt 00 - o]. (12)

According to the forms of (9)-(12), the cost
function of the game then becomes

J(0) = xF (0)diag(ITy", 0,7 )%, (0) + Z”u(t)"

y 2
+3 |yt =) — Hy (0)x, ()]
=0 (13)

_2 N - 2
v Y EC =D - L(O)x, 0] -

t=0

Note that the H,, multi-stép prediction is equivalent
to the H,, filtering problem for the augmented system
(6)-(8). The results in [12] are summarized as
followed.

Lemma 1: Considering the system (1)-(3) and the
associated performance criterion (4), and a given
scalar y >0, then we have
1) An H, estimator Z(t|z—[) that achieves (4)

exists if and only if the following Riccati equations

Pyt +1) =T (N4 () + P, (OZ, Q7 (1), (14)

2,0 = BT +[H] (O)H (1)
(15)

Y 2L OL OB, ),
z"a (O) = diag(HEI: Onlxnl )7 (16)
or equivalently,

-1
Ha(t) =-P:z(l'|'1’ t)Ht]:l[]m +Ht—l[;+l,l+1(t)Ht7il]

xH, Pl (1+1,0)+ P,(t), (17)
(0 =y 1,0, OL (1, -y LI (OL] T
<L, TIL (1, 1) + T, (1), (18)

Pt +1) =T, (OT5 () + D, (O, ()L (1) (19)

have a solution so that £,(#)=0,0<¢<N, where

P(2) is partitioned as
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B,(0)={B;(1),1<i, j<I+1}, (20)

with the dimension of F;(t) is nxn, P,(i,1)
represents the i-th column blocks of P,(¢), and
IT,(#) is partitioned similarly to P, (¢).

2) In this case, the H, multi-step prediction is
obtained as

Z(t]t =1 =L, (Dx (1), 2n

where ¥,(f) is computed by the following equation:

Zo(t+1) =@, (OP,(OVHL (O] + H, ()P, (DHL ()]

X +1-0) = H,(t+ DD, (0)x4(0)]
+q)a (t)xa(t)~ (22)

Remark 1: As shown in Lemma above, P,(f)=
{F;(1),1<i,j<I+1} is the key to design the multi-

step predictor. The calculation is very complicated
because of the high dimension of the augmented
system. For the sake of simplicity, we shall propose a
distributed algorithm.

3.2. A new method for multi-step prediction
In view of (1)-(3), we introduce a system in Krein
space [11,13]

X, (1 +1) = @, (), (1) + T, (Hu(?), (23)

P(t = } - [H” (t)}xa(t) + {V(t ) 1)}, t>1, (24)
211~ | Ly v, (0)

21t -1) = L(Ox, (D +v, (0,0t <], (25)

where @, (t), H,(t), L,(¢), T ,(t) are defined as
(10)«(12), u(i),v(i) and v_(i) are assumed to be
uncorrelated white noises

<u(i)’ u(])> = Qu (1)81] ’ <V(l)’ V(])) = Qv (1)81] )
<Vz (l)a vz (])> = Qu (1)81]9 (26)
0,)=1,,0,()=1,,0, ()=-1,%",

here the bilinear form <,> is an operator to obtain the

covariance matrix, i.e., (u,u) = E(uu"), where E()
denotes “expectation”.

Remark 2: Note that 0, (1)<0, then system
(23)-(25) is no longer a system in Euclidean space but
an indefinite space (Krein space).

The linear A, estimation theory in Krein space has
been well studied in [11]. For the convenience of
discussion, we recall the projection in Krein space.

Given elements s(i) and {ygy,y;, -,y ;1 inKrein

space, we define §(i| j) to be the projection of s(7)

onto L{yg,y,---,y;}, then
s(i) =8(i| ))+8G| ), 27

where 8(i|j) € L{yo,y1,--,¥,;} and §(i|j) satisfy
orthogonality condition

SELDY L LYo, Y1505 ¥ s (28)

or equivalently, <§(i|j),yk>=0 for any £=0,1,---,
j. As is well known, the projection in Euclidean

space always exists and unique. However, this is not
always the case in Krein space. Actually, the Krein
space projection exists and is unique if and only if a
certain Gramian matrix is nonsingular.

Let y.(¢r) be the observation of system (24)-(25) at
time ¢, then we have,

Z(t|t 1), 0<r<l
y:(0=4| yt-1) sl (29)
Z(t|t=1)
Theorem 1: Consider the system (23)-(25). The

matrix P,(f) isas

P, (1) 2(za(0), %(0))>

o (30)
F,(0) =diag(Ily, Olpxlp )
where
Xa() =%, () - %t -1), (1)

and g,(f|t—1) is the projection of x,(r) on the
linear space

Liy . (0),y, (D), -y, (=1} (32)

Then the matrix £,(f) is the solution to Riccati
equations (14)-(16) or (17)-(19).

Proof: For ¢>/, using the Kalman filtering
formulation in Krein space [11,13], it follows

Ha(t)T
L,(0)
0, (Ow, (), (33)

Rt +1]1) =@, (OX(t |t_1)+q)a(t)Pa(t)|:

where w,(f) is the innovation, i.e., one step prediction
error of observation y_(¢),t=/,

H (1) v(t-1)
wz(t)zliLa(t):ixa(t)"'l: VZ(f) j|a (34)

and Q, (¢) is calculated by

0, (1) =(w, (), w.(1)). (35)
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Since  g,(t+1) is uncorrelated with w_(¢), it
follows from the above equation that

=HOT _ [H, @0
Fat+ D+ @, OF0) ° 5 Q) (1 ]GO

xP, (0] (1) = D, (1) P, ()DL (1) + T, ()L (¢).

Obviously, (36) can be rewritten as (17)-(19).
For ¢</, similar results can be easily rewritten as

(17)-(19) with the initial value P,(0). Now we

complete the proof. 0
In view of (9) and (30), the matrix P,(¢) has the
form of

Pa(t):{P,-j(t),i,j:1,2,---,l+1}, (37)
with
Pi(1) = (Xt —i+1), %t~ j+1)), (38)
X(t-s+D)=x(t—s+1)—x(t —s+1]z-1),
s=1i,7], (39)

where X(f—s+1|t-1),(s =4, j) is the projection of
x(—s+1) onto the linear space of (32). Thus the
computation of P,(¢) is converted into the problem
of calculating F; ® G j=12,---,1+1). To this end,

we introduce a reorganized innovation sequence and
the associated Riccati equation.

From (29) and let.#,, =¢—/-1, the linear space
(32) is equivalent to

Ly(0), -+ ¥(1141); ¥5(0), -, y(r = 1)} (40)

or
L{Yf(o)a ) yf(tlJrl); YS(t_l), ) YS(t_l)}a (41)

where for i=0,1,--,1,4,

e[ Y0 T[H] [V
02 o o o] of @

and

y, () 2E(i|i-1), i=12--,r-1. (43)

Definition 1: The estimation f(i |k, j) is defined
as the projection (if exists) of &(;) onto the linear
space of

Based on Definition 1, the reorganized innovation
sequence associated with (40) (or equivalently (41)) is

w(t,1),0<1<8,5W(T,01,), t -1 <1<t -1}, (44)

where
w(T, )2y () -§ (e 1-11-1), (45)
w(t, 1) 2y (D - (tlt-L1,,),1>0,, (46)
while yf(r|r—1,r—1) and y (t|t-11,) are
defined as in Definition 1, i.e., the projection of

ys(1) and y (1) onto linear space

L{y £(0),---, ¥y (= 1)}
and
L{yf(O), ¥y =1), "-,ys(r—l)},

respectively, and y (t)=Z(¢|¢-1).

Similar to the discussion in [14], it is not difficult to
show that (44) is the innovation sequence and spans
the same linear space as (41), where (44) is termed as
the reorganized innovation process.

Definition 2: The matrix

PI(0)2(x(t + j), et +i,1)); j20,i>0 (47)

is termed as the cross covariance matrix of the state
X(¢ + j) with state estimation error (¢ +1i,¢),

e(t+i,)=x@+i)—X(@+i|t+i-10),i>0, (48)

and X(¢+i|t+i—1¢) isasin Definition 1.
As to be shown, the matrix Pl.j (t) plays an
important role for the distributed algorithm of P, (¢).

Theorem 2: The cross-covariance matrix Pl.j (t)

can.be calculated by the following process.
1) Thecaseof i=.

For i=1, Pll(t) is a solution to the following
equation

H T
B () =0,R\(t-no] —CDtPll(t—l){ }
' (49)

H
<O (t, t)[LtJPll(t—l)(I)tT +I,17,
t

where Pll (-)=F, and

0= Rl 1H’T+Im ) (50)
O L P

For i>1, P,-’(t) is a solution to the following
Riccati equation

; i1y o T i1 gy T
B () =@ ;4 P (O — Py 1 B (DH iy
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<Ot +i~1L,0H, ., P (o,
+ t+i—1rt+i—1’ R (t) 5

(51)
where

Oy +i-L0)= L P OLL ~v*1,.  (52)
2) The case of i j.
For j>i,

P/(6)=0,, P/~ (0), B (0), (53)

else for j<i,

F (=P (A" (t+i-1,0, P/ (1), (54)
where
At +i-1,0=0,,; -0, BT OH],,
<O\t +i-1,0)H,., |.

Proof: By applying the reorganized innovation
analysis, the proof is completed similarly as [14]. O

Now, we present the distributed algorithm for
computing P,(f) based on the reorganized innovation
sequence and the associated Riccati equations
aforementioned.

Theorem 3: The solution to the Riccati equation
(17)-(19) associated with the augmented system (6)-

(8)is given by P,(r)= {F;(,1<i, j<I+1}, where
F;(t) compute by

(55)

[—i+2 / 2
By(t)= B13 (4a) - ZPI L)L 6

XQ;v (t=s, 4L, _4[B 1 5+1 ([l+1)

where ¢ =1-1-1,
l
Ot =8,110) = L B3 () Ly =1, (57)

and P(7,,,) are calculated by Theorem 2.
Proof: Note that

i(t—j+1):x(t—j+1)—i(r—j+1|t—l,tM),

where X(r—j+1|t-1,¢4,,) is the projection of
x(t—j+1) onto the linear space of (40). Since

w(:,-) is white noise, using projection formula yields
J-1
~ . . ! 2
X(=j+D=et=j+L0,) = 3 B )l
s=1
QN (t=s, 1, )W(t=5,1,,),

where

W(t =5t )=L,_se(t—s,t,)+v_(t—s). (58)

Thus we have F;(¢) as shown in (56). N

By Theorem 2, a simple method for multi-step
prediction can be obtained easily as in the following
theorem.

Theorem 4: Consider the system (1)-(3). For a
given scalar y >0,

1) An H, estimator Zz(¢|f—/) that achieves (4)

exists if and only if

T
Hy B OH +1,
LR, (OHE,

H, P, (DL
LRy 21

and

Tm : ]
2
0 -,
have the same inertias.
2) If zZ(t|t-1),t =1 exists, then the H, multi- step

predictor Z(¢|t—1/) is given by
Z(t |1 =1) = L, (D% ,0),
where x,(¢) is computed by

F (D=0, (O3, O+ K, + Dyt -1+1)

(59)
~K,(t+DH (1 + D, ()3 ()],

-1
K, (=P, +LOH I+ H,_ By OHL T,

(60)
with
H,l+l (t)
P(I+Lt)=
Pl+1,l+1(f)
The matrices B;(t) and F,;(0),i=12,--,1+1
can be computed as
1
Ry(0) =B (), PHu(r):PM (1121, (61)
2 J—i+2
Pya(t)=B""(5,)- ZPZ RO
s=1
<L (O (=, )L (B @
(62)

Proof: Based on Lemma 1, for a given y>0, an
H estimator Z(¢|t—/) that achieves (4) exists if
and only if X,(r)>0,(0<t<N), where Z (¢)
asin (15) and P,(t) can be computed by Theorem 3.
Recall [11,13], Z,(#)>0,(0<t < N) isequivalent to
that
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T
H (¢ H (¢ I 0
{ a()},am{ A)} im0
L, L, 0 —yI »
and
I, 0
0 —72] »
have the same inertia. Furthermore, we note that
T I 0
H,() H, () m
1A + )
L, (1) L, 0 —y°I »
H Byn®H  +1, H, 1-1Ba 1 (OLF
LB (OHL, LB(OL 1,

A multi-step predictor Z(¢|f—/) is given by (20)-

(22), which can be easily rewritten as (59)-(62).
Remark 3: Note that only the block matrices

Fia@,i=12,---,1+1 and B,(t) are required for

the multi-step predictor in Theorem 4. We need not to
compute all the blocks of F,(r)={F;(1).i,j=

1,2, +1) asin (17)-(19).

3.3. Operation count for computing P, (¢)

In the above subsection, we have revisited the
previous work and presented a new approach for
multi-step prediction. For the purpose of comparison,
we shall give the operation numbers of calculating
P,(t) by the two approaches.

Traditionally, as additions are much faster than
multiplications and divisions, counted together, which
is used as the operation count. For a convenient
notation, denote MD(-) the number of multiplica-
tions and divisions (the multiplication is from right to
left), the MD1 and MD?2 are defined as the numbers of
calculating P,(f) with P (t—1) by previous work
and the new approach in this paper. It is clear that
MD1 > MD2 when [ is appropriately large. Moreover,
when [/ is bigger, the difference is bigger (suppose
that p is fixed). For example, consider the system

(1)-3) with n=4, m=1, p=3 and r=1. We
investigate the relationship between the MD number
and / shown as Table 1.

Table 1. Comparisons of computational cost.

[ 1 2 3 5 8
MDI | 1444 | 2620 | 4148 | 8260 | 17068
MD2 | 1459 | 2274 | 3217 | 5487 | 9852

4. CONCLUSION

In this paper, we have approached the problem of
H, multi-step prediction by using the innovation
reorganization analysis and the projection formula in
an indefinite linear space. The main contribution is
that we have presented a distributed algorithm to the
Riccati equations. A numerical example has clearly
indicated the low computational cost of our algorithm.

REFERENCES

[1] T. Kailath, A. Sayed, and B. Hassibi, Linear
Estimation, Prentice-Hall, Englewood, Cliffs, NJ,
1999.

[2] K. M. Nagpal and P. P. Khargonekar, “Filtering
and smoothing in an H,, setting,” IEEE Trans. on
Automatic Control, vol. 36, pp. 152-166, 1991.

[3] E. Fridman, U. Shaked, and L. H. Xie, “Robust
H, filtering of linear systems with time-varying
delay,” IEEE Trans. on Automatic Control, vol.
48, no. 1, pp. 159-165, 2003.

[4] U. Shaked, “H, optimal estimation-old and new
result,” Proc. of the 21st Brazilian Automatic
Control Conference, Uberlandia, MG, Brasil,
September 1998.

[5] P. Colaneri and A. Ferrante, “A J-spectral
factorization approach for H, estimation
problem in discrete time,” IEEE Trans. on
Automatic Control, vol. 47, no. 12, pp. 2108-
2113, 2002.

[6] P. Colaneri and A. Ferrante, “Algebraic riccati
equation and J-spectral factorization for H.,
estimation,” System & Control Letters, vol. 51,
no. 5, pp- 383-393, 2004.

[7] P. Colaneri and A. Ferrante, “Algebraic riccati
equation and J-spectral factorization for H,
filtering and deconvolution,” SIAM J. Contr. and
Opt., vol. 45, no. 1, pp. 123-145, 2006.

[8] H. Gao and C. Wang, “A delay-dependent
approach to robust H, filtering for uncertain
discretetime state-delayed systems,” [EEE Trans.
on Signal Processing, vol. 52, no. 6, pp. 1631-
1640, 2004.

[9] L. Mirkin and G. Tadmor, “Yet another H,
disctetization,” IEEE Trans. on Aufomatic
Control, vol. 38, pp. 891-894, 2003.

[10] G. Zames, “Feedback and optimal sensitivity:
Model reference transformations, multiplicative
seminorms, and approximate,” [EEE Trans. on
Automatic Control, vol. 26, pp. 301-320, 1981.

[11] B. Hassibi, A. H. Sayed, and T. Kailath,
Indefinite Quadratic Estimation and Control: A
Unified Approach to H2 and H,, Theories, SIAM
Studies in Applied Mathematics Series, 1998.

[12] Y. Theodor and U. Shaked, “Game theory
approach to H, optimal discrete-time fixed-point
and fixed-lag smoothing,” IEEE Trans. on



[13]

[14]

H- Multi-Step Prediction for Linear Discrete-Time Systems: A Distributed Algorithm 141

Automatic Control, vol. 39, pp. 1944-1948, 1994.

H. Zhang, L. Xie, Y. C. Soh, and D. Zhang, “H.,
fixed-lag smoothing for linear time-varying
discrete time systems,” Automatica, vol. 41, no.
5, pp- 839-846, 2005.

H. Zhang, L. Xie, D. Zhang, and Y. C. Soh, “A
reorganized innovation approach to linear
estimation,” JEEE Trans. on Automatic Control,
vol. 49, no. 10, pp. 1810-1814, 2004,

Hao-gian Wang received the Ph.D.
degree in Harbin Institute of Tech-
nology in 2005. His research interests
include signal processing, descriptor
systems, and video coding.

Huan-shui Zhang received the Ph.D.
degree in Northeast University in 1997,
His research interests include robust
filtering, optimal control, and signal
processing.

Hong Hu received the Ph.D. degree in
Toronto University in 2003. His
research interests include micro/nano
systems, motion control and micro-
electronics manufacturing.



