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Estimation of Liquidity Cost in Financial Markets'

Johan LimY, Kiseop Lee?, HyunSeok Song®

Abstract

The liquidity risk is defined as an additional risk in the market due
to the timing and size of a trade. A recent work by Cetin et al. (2003)
proposes a rigorous mathematical model incorporating this liquidity risk into
the arbitrage pricing theory. A practical problem arising in a real market
application is an estimation problem of a liquidity cost. In this paper, we
propose to estimate the liquidity cost function in the context of Cetin et al.
(2003) using the constrained least square (LS) method, and illustrate it by
analyzing the Kellogg company data.
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1. Introduction

Classical theories of financial markets assume the frictionless and the competitive
market paradigms. A frictionless market is one without transaction costs and trade
restrictions, and a competitive market assumes that traders act as price takers so that
their trades do not have any impact on the price process. This idealized state is well
applied to highly liquid stocks and is useful to create tractable models and clarify ideas.
However, since transaction costs do of course exist and since unlimited liquidity is only
reasonably approximated by no more than 100 stocks or so on the New York Stock
Exchange, one is naturally led to question of how these assumptions are allowed to be
weakened and how this more closely approximates reality.

A relaxation of the frictionless and competitive market introduces the notion of lig-
uidity risk which is often defined as the additional risk in the market due to the timing
and size of a trade. Recently, Cetin et al. (2003) propose a rigorous model incorporat-
ing the liquidity risk into the arbitrage pricing theory. They establish a mathematical
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formulation of a liquidity cost, admissible strategies, self-financing strategies, and an ap-
proximately complete market. Also, they show that the two fundamental theorems of
finance hold under the existence of the liquidity risk, approximately modified; the first
fundamental theorem states that under the competitive market assumption, the mar-
ket is arbitrage-free if and only if there exists an equivalent martingale measure; the
second theorem tells us that if the equivalent martingale measure is unique, then the
market is complete. In particular, they study an extension of the Black-Scholes economy
incorporating liquidity risk as an illustration of the theory.

A practical problem arising in a real market application is an estimation problem
of a liquidity cost. Many people both in academia and industry have studied how to
measure the liquidity itself; for example, Houweling et al. (2003), Fleming (2002), Datar
et al. (1998), and Muranaga and Ohsawa, (2003), using various statistics such as bid-ask
spread, volume, turnover ratio and impact cost. In this paper, instead of the liguidity
itself, we are interested in estimating the supply curve in the context of Cetin et al.
(2003). A supply curve S(t,z,w) represents the stock price per share at time ¢ € [0, 7]
that the trader pays/receives for an order of size x € R. given the state w € Q. A positive
order(z > 0) represents a buy, a negative order(z < 0) represents a sale, and the zeroth
order{z = 0) corresponds to the marginal trade. In a perfectly liquid market, all orders
can be considered marginal. For the detailed structure of the supply curve, we refer to
Section 2 of Cetin et al. (2003).

As a special case, we consider a multiplicative model

S(t,z) = /@ S(t,0), (1.1)

where S(¢,0) is the price of liquid market by Black-Scholes stock price equation:

S(t,0) :Soexp{(,u—oz/2)t+aWt}, (1.2)

where W; is the standard Brownian motion and Sy is arbitrary initial value. We make
the assumption of monotone S(¢,z) in = and, hence, the assumption of monotone f(z)
in z, which tells that the larger volume of the purchase (or sale), the larger the price
impact that occurs on the share price. We also assume f(0) = 0.

We apply the constrained least square (LS) method to estimate the model (1.1)
studied in Geyer (1991). Geyer (1991) studies nonparametric function estimation with
monotone or convex shape constraints. He suggests to use the LS method with becomes
a quadratic programm with linear inequality constraints for shape constraints. In our
problem, for the adjacent observed points S(t;,z;) and S(t;+1,%it1), the model (1.1)

implies that
S(ti+17xi+1)
tog (25e200)) — fai0) - (o) 4

where u; follows the Gaussian distribution with mean (t;1 —t;)(u — 02/2) and variance
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(ti+1 — t;)o%. Thus, the main problem to be solved is, for s; = t;11 — &,

2
minimize 33, S% [log (&?Z}%—)ﬂ—w - (Si (1 —0%/2) + f(@it1) — f(wi))] ) w3

subject to f is monotone and f(0) = 0.

We illustrate the model and the constraint LS by analyzing the trading data of the
company Kellogg during a week in the year 2000.

We organize the paper as follows. We study details of the model by Cetin et al.
(2003) in Section 2, and analyze the Kellogg company trading data in Section 3. Section
4 concludes the paper with some additional issues not covered in the main body.

2. Semi-parametric Model for Liquidity Cost

Cetin et al. (2003) propose the multiplicative model (1.1) where S(t,0) is the Black-
Scholes price and linear function f(z) = ax. They made several assumptions to S(t, )
including that f(z) is twice differentiable in x; (i) it is measurable to the filtered prob-
ability space; (ii) for almost every t, S(t,z) is a non—decreasing function of z a.s. P;
(iii) it is twice continuously differentiable with respect to z, and both 9S(t,z) / Oz and
8?S(t, ) /8x? are continuous in t; (vi) S(-,x) is a semi-martingale; and (v) S(t,z) has a
continuous sample path for every x.

Unlike Cetin et al. (2003), in this paper, we only assume that f(x) is monotone in z
and f(0) =0 as addressed in the Introduction.

The interest of the paper is to estimate the model (1.1) from the observed transaction
data S(t;,x;) for i = 1,2,...,n. For the regularly observed data (for the adjacent time
points t;,1 and t;, t;11 —t; is constant A over 1), the model (1.1) implies that

log (%) = f(zis1) — fl@:) + (u - g;)A + €,

where ¢; follows the Gaussian distribution with mean 0 and variance Ac? which does not
dependent on ¢; and ;1.

The main problem to be solved, thus, is formulated into
n 2
minimize Z [log (S(t—lﬂ’&—ﬂ) — (a + f(zit1) — f(xz))] )
i=1 S(tl7xl) (21)

subject to f is monotone and f(0) =0,

where a = A(p — 02/2).
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3. How to Solve

In this section, we shortly discuss how to solve the main problem (2.1).

The problem to be solved is approximated by a quadratic program (QP) with in-
equality constraints. The minimization problem (2.1) is an infinite dimensional problem,
and we approximate the function f as a piecewise constant function that

f(.'L‘) = fk, if ze€ [ck_l,ck),

where —0o =¢g < €1 < -+ < ¢p < €py1 = 00. Here, the function f is monotone, and we
assume f; < --- < f,. Then, the problem becomes

2

f1
n fo
Z Yi—a—a; ’
i=1
fp—l
o
where S )
o tit1, Tiq1
Y =log < S(ti, i) )

and a; is 1 X p vector indicating the interval having z;. Equivalently, with matrix notation,
the problem (2.1) becomes a QP:

minimize 7 AT Af — 2y Af

1
subject to Cf <0, 0=<f (31)

where f = (a, f1,..., fp)T and y = (y1,...,¥yn), A is defined as

a+  f(z2) — f(z1) o
at  f(z3)— f(z2) 4 bil

a+ f(zn) — f(zn-1) fr

and C is
01-1000 ---00
00

001 -10 0
C =

000 00--- 011
The two most common methods to solve a constrained QP are the simplex method
and the interior point methods. The primal dual simplex method, originally developed
by Dantzig (1963), solves the KKT conditions by reformulating the problem to a linear

programming problem. The Karush-Kuhn-Tucker (KKT) conditions of a linearly con-
strained QP is a set of linear equations and solved analytically (Van de Panne, 1975;
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Boyd and Vandenberghe, 2003). An alternative to the simplex method is the interior
point method by Karmarkar (1984). The interior point method easily utilizes the sparse
structure of a quadratic form and has shown to be very competitive to the simplex
method especially to solve a large scale QP (Boggs et al., 1996). A high-quality imple-
mentation of a primal-dual interior-point method for QPs is available from solvers that
are already available. Examples are MOSEK software package (MOSEK ApS, 2002), and
YALMIP (Léfberg, 2003), and cvx (Grant et al., 2005), which have a simple interface
that recognizes and solves QPs.

4. Analysis of Kellogg Company Data

The data set we use in this section records transactions of the company Kellogg
for 5 business days (a week) in the year 2000. Three variables, transaction time, vol-
ume, and price, are observed for each transaction, where the negative volume implies
the sale-initiated trade and the positive volume implies buy-initiated trade. Total 7644
transactions are observed and the price trajectory of day 1 is plotted in Figure 4.1.

We filter the original transaction data for the next analysis. We sample the data at
every five minutes using the nearest data to the given time points from the beginning of
the market so that we have 79 observed points in each day. The filtering procedure is
illustrated by Figure 4.1.

We solve the constrained LS problem (2.1) using MOSEK ApS optimization software

] ¥ BE 3 5%
Time:

Figure 4.1: Sampling of raw transaction data. The solid line is the trajectory of
the original transaction price, and the circles represent the sampled prices.
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Figure 4.2: Estimated liquidity cost of Kellogg company

which uses a state-of-the-art interior point method, whose trial version is freely given to
researchers. The estimated liquidity cost curve is plotted in Figure 4.2.
The liquidity cost per share, when trading x shares, is

S(t,z) — S(t,0) = { exp (f(z)) — 1}5(¢,0).

In other words, we pay (e/(*) —1)S(t,0) more per share if we trade z shares at one time.
If we do block trading of n blocks of z/n shares, then the cost per share we pay more
becomes

5(¢, (z/n)) — S(t,0) = { exp (f(z/n)) — 1}5(¢,0).
Thus, to investigate the relationship between trading volume z and its liquidity cost, it
would appropriate to study the curve ef(*) — 1 instead of f(z) itself.

Figure 4.2 shows that, in a buy order, the graph slowly increases up to 10,000 shares
but then increases more rapidly after 10,000. In a sale order, the graph decreases moder-
ately up to 5,000 shares but then decreases more rapidly after 5,000 shares. This supports
a widely studied asymmetric liquidity effect, which indicates that block sellers pay more
liquid premium than block buyers. Roughly speaking, a buy order can tolerate up to
about 10,000 shares, but a sale order can tolerate only up to 5,000. In addition, even
when we compare the intervals [—5,000, 0] and [0, 10,000], the sale side has a steeper
slope, which also supports the asymmetry. Interested readers can consult Frino et al.
(2003), Tse and Xiang (2005) and references therein.
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Another important thing we can observe is the common trading strategy which di-
vides a large block trade into small ones to hide the block trade. This trading strategy
is justified by monotonicity of f, which means |exp(f(z/n)) — 1| < |exp(f(z)) — 1| for
all n. So, assuming that the market price does not move a lot during the time, you can
pay less per share by dividing your block trade into small ones.

For example, suppose a trader wants to sell 20,000 shares. Then, dividing this into
two 10,000 share orders does not help the case much, since a trade with size 10,000 is
still a large trade and it still costs about same liquidity cost. If the trader wants to cut
the liquidity cost to the half, she should divide about three 6,600 share orders roguhly
(from Figure 4.2). Still, she may not be able to cut the liquidity cost to the half, since
the price may move up during the time. But it is unlikely for the price to be doubled,
which can offset the gain from from the smaller liquidity cost. Therfore, it is still a good
strategy for the trader.

5. Conclusion

We have studied how to estimate the supply curve modeling a liquidity cost, using
the constrained least square method. We analyzed Kellogg company data from 1994 to
2000. The estimated supply curve shows well studied asymmetry of liquidity premium,
which implies that block selling usually cost more liquidity cost than block buying. An
advantage of this approach over previous studies is that this modeling not only shows
the asymmetry, but also gives an explicit mathematical equation which exactly calculates
the liquidity premium.
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