References
- Chaloner, K. (1989). Bayesian design for estimating the turning point of a quadratic regression. Communication in Statistics and Methods, 18, 1385-1400 https://doi.org/10.1080/03610928908829973
- Chaloner, K. and Larntz, K. (1989). Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference, 21, 191-208 https://doi.org/10.1016/0378-3758(89)90004-9
- DasGupta, A and Studden, W. J. (1991). Robust Bayesian experimental designs in normal linear models. The Annals of Statistics, 19, 1244-1256 https://doi.org/10.1214/aos/1176348247
- Dette, H (1990). A generalization of D- and Dl-optimal designs in polynomial regression. The Annals of Statistics, 18, 1784-1804 https://doi.org/10.1214/aos/1176347878
- El-Krunz, M. Sadi and Studden, W. J. (1991). Bayesian optimal designs for linear regression models. The Annals of Statistics, 19, 2183-2208 https://doi.org/10.1214/aos/1176348392
- Mandal, N. K. (1978). On estimation of the maximal point of a single factor quadratic response function. Calcutta Statistical Association Bulletin, 27, 119-125 https://doi.org/10.1177/0008068319780109
- Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308-313 https://doi.org/10.1093/comjnl/7.4.308
- Seo, H. S. (2002). Restricted Bayesian optimal designs in turning point problem. Journal of the Korean Statistical Society, 30, 163-178
- Seo, H. S. (2006). Mixture Bayesian Robust Design. Journal of the Korean Society for Quality Management, 34, 48-53
- Silvey, S. D. (1980). Optimal Design. Chapman & Hall/CRC, London
- Whittle, P. (1973). Some general points in the theory of optimalexperimental design. Journal of the Royal Statistical Society, Ser. B, 35, 123-130