DOI QR코드

DOI QR Code

남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화

Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean

  • 장양희 (부산대학교 지구환경시스템학부) ;
  • 김부근 (부산대학교 지구환경시스템학부) ;
  • 신형철 (한국해양연구원 부설 극지연구소 극지생물해양연구부) ;
  • ;
  • ;
  • 홍창수 (한국해양연구원 기후.연안재해연구부)
  • Jang, Yang-Hee (Division of Earth Environmental System, Pusan National University) ;
  • Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Shin, Hyoung-Chul (Division of Polar Biology & Ocean Sciences, KOPRI, KORDI) ;
  • Sigman, Daniel M. (Department of Geosciences, Princeton University) ;
  • Wang, Yi (Department of Geosciences, Princeton University) ;
  • Hong, Chang-Su (Climate Change & Coastal Disaster Research Department, KORDI)
  • 발행 : 2008.12.30

초록

Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

키워드

참고문헌

  1. Altabet, M.A. 2006. Isotopic tracers of the marine nitrogen cycle: Present and past. p. 251-293. In: The Handbook of Environmental Chemistry, v. 2N. Springer, Berlin, Heidelberg
  2. Altabet, M.A. and R. Francois. 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nutrient utilization. Glob. Biogeochem. Cycles, 8, 103-116 https://doi.org/10.1029/93GB03396
  3. Bakker, D.E., H.W. de Baar, and U.V. Bathmann. 1997. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep-Sea Res. II, 44, 91- 127 https://doi.org/10.1016/S0967-0645(96)00075-6
  4. Banse, K. 1996. Low seasonality of low concentrations of surface chlorophyll in the Subantarctic water ring: Underwater irradiance, iron, or grazing? Prog. Oceanogr., 37, 241-291 https://doi.org/10.1016/S0079-6611(96)00006-7
  5. Bohlke, J.K. and T.B. Coplen. 1995. Interlaboratory comparison of reference materials for nitrogen isotope ratio measurements, p. 51-66. In: Reference and intercomparison materials for stable isotopes of light elements, Vienna. International Atomic Energy Agency, IAEA-TECDOC-825
  6. Braman, R.S. and S.A. Hendrix. 1989. Nanogram nitrite and nitrate determination in environmental and biologicalmaterials by vanadium (iii) reduction with chemiluminescence detection. Anal. Chem., 61, 2715-2718 https://doi.org/10.1021/ac00199a007
  7. Brandes J.A., A.H. Devol, T. Yoshinari, D.A. Jayakumar, and S.W.A. Naqvi. 1998. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnol. Oceanogr., 43, 1680-1689 https://doi.org/10.4319/lo.1998.43.7.1680
  8. Carmack, E. 1977. Water characteristics of the Southern Ocean south of the Polar Front. p. 15-41. In: A Voyage of Discovery, ed. by M. Angel. Pergamon Press, New York
  9. Casciotti, K.L., D.M. Sigman, M.C. Hastings, J.K. Bohlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate on seawater and freshwater using the denitrifier method. Anal. Chem., 74, 4905-4912 https://doi.org/10.1021/ac020113w
  10. Christensen, S. and J.M. Tiedje. 1988. Sub-parts-per billion nitrate method - Use of an $N_2O^−$ producing denitrifier to convert ${NO_3}^−$ or ${({NO_3}^-)-}^{15}N$ to $N_2O$. Appl. Environ. Microbiol., 54, 1409-1413
  11. Frank, V.M., M.A. Brezezinski, K.H. Coale, and D.M. Nelson. 2000. Iron and silicic acid availability regulate Si uptake in the Pacific sector of the Southern Ocean. Deep-Sea Res. II, 47, 3315-3338 https://doi.org/10.1016/S0967-0645(00)00070-9
  12. Gonfiantini, R., W. Stichler, and K. Rozanski. 1995. Standards and Intercomparison Materials Distributed by the IAEA for Stable Isotope Measurements. p. 13-29. In: Reference and intercomparison materials for stable isotopes of light elements, Vienna. International Atomic Energy Agency, IAEA-TECDOC-825
  13. Gordon, A.L. 1967. Structure of Antarctic waters between $20^{\circ}$W and $170^{\circ}$W. p. 1-10. In: Antarctic map folio series, v. 6., ed. by V.C. Bushnell. American Geography Society
  14. Gordon, A.L., C.T.A. Chen, and W.G. Metcalf. 1967. Winter mixed layer environment of Weddell Deep Water. J. Geophys. Res., 89, 637-640 https://doi.org/10.1029/JC089iC01p00637
  15. Greenberg, E.P., and G.E. Becker. 1977. Nitrous-oxide as end product of denitrification by strains of fluorescent pseudomonads. Can. J. Microbiol., 23, 903-907 https://doi.org/10.1139/m77-133
  16. Holm-Hansen, O., S.Z. El-Sayed, G.A. Franceschini, and G.L. Cuhel. 1977. Primary production and the factors controlling phytoplankton growth in the Southern Ocean. p. 11-50. In: Adaptations within Antarctic ecosystems on Antarctic Biology. Smithsonian Instit., Washington
  17. Hutchins, D.A., P.N. Sedwick, G.R. DiTullio, P.W. Boyd, B. Queguiner, F.B. Griffiths, and C. Crossley. 2001. Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: Experimental results from the SAZ project. J. Geophys. Res., 106, 31,559-31,572 https://doi.org/10.1029/2000JC000333
  18. Karsh, K.L., T.W. Trull, M.J. Lourey, and D.M. Sigman. 2003. Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron RElease Experiment (SOIREE). Limnol. Oceanogr., 48, 1058-1068 https://doi.org/10.4319/lo.2003.48.3.1058
  19. Mariotti, A., G.C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux. 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles: Illustrations for the denitrification and nitrification processes. Plant Soil, 62, 413-430 https://doi.org/10.1007/BF02374138
  20. Martin, J.H., S.E. Fitzwater, and R.M. Gordon. 1990. Iron in Antarctic waters. Nature, 345, 156-158 https://doi.org/10.1038/345156a0
  21. Minas, H.J. and M. Minas. 1992. Net community production in “high nutrient-low chlorophyll” waters of the tropical and Antarctic Oceans: Grazing vs. iron hypothesis. Oceanol. Acta, 15, 145-162
  22. Montoya, J.P. and J.J. McCarthy. 1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res., 17, 439-464 https://doi.org/10.1093/plankt/17.3.439
  23. Needoba, J.A., N.A. Waser, P.J. Harrison, and S.E. Calvert. 2003. Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Mar. Ecol. Prog. Ser., 255, 81-91 https://doi.org/10.3354/meps255081
  24. Nelson, D.M., M.A. Brezezinski, D.E. Sigmon, and V.M. Franck. 2001. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep-Sea Res. II, 48, 3973-3995 https://doi.org/10.1016/S0967-0645(01)00076-5
  25. Orsi, A.H., T. Whitworth, and W.D. Nowlin. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641-673 https://doi.org/10.1016/0967-0637(95)00021-W
  26. Pennock, J.R., D.J. Velinsky, D.J. Ludlam, J.H. Sharp, and M.L. Fogel. 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for ${\delta}^{15}$N dynamics under bloom conditions. Limnol. Oceanogr., 41(3), 451-459 https://doi.org/10.4319/lo.1996.41.3.0451
  27. Raven, J.A. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytologist, 109, 279-285 https://doi.org/10.1111/j.1469-8137.1988.tb04196.x
  28. Richards, F.A. 1965. Anoxic basins and fjords. p. 611-645. In: Chemical Oceanography, v. 1, ed. by J.P. Riley and G. Skirrow. Academic Press, London
  29. Robertson, J.E. and A.J. Watson. 1995. A summer-time sink for atmospheric carbon dioxide in the Southern Ocean between 88$^{\circ}$W and 80$^{\circ}$E. Deep-Sea Res. II, 42, 1081-1091 https://doi.org/10.1016/0967-0645(95)00067-Z
  30. Sedwick, P.N., G.R. DiTullio, and D.J. Mackey. 2000. Iron and manganese in the Ross Sea: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res., 105, 11,321-11,336 https://doi.org/10.1029/2000JC000256
  31. Sievers H.A. and W.D. Nowlin. 1988. Upper ocean characteristics in Drake Passage and adjoining areas of the Southern Ocean, $39^{\circ}$W-$95^{\circ}$W. p. 57-80. In: Antarctic and Resources Variability, ed. by D. Sahrhage. Springer, Berlin
  32. Sigman, D.M. and E.A. Boyle. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869 https://doi.org/10.1038/35038000
  33. Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J.K Bohlke. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem., 73, 4145-4153 https://doi.org/10.1021/ac010088e
  34. Sigman, D.M., M.A. Altabet, D.C. McCorkle, R. Francois, and G. Fischer. 2000. The ${\delta}^{15}$N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior. J. Geophys. Res., 105, 19,599-19,614 https://doi.org/10.1029/2000JC000265
  35. Sigman, D.M., M.A. Altabet, R. Francois, D.C. McCorkle, and G. Fischer. 1999. The ${\delta}^{15}$N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. Glob. Biogeochem. Cycles, 13, 1149-1166 https://doi.org/10.1029/1999GB900038
  36. Smith, W.O. and D.M. Nelson. 1986. Importance of ice edge phytoplankton production in the Southern Ocean. Bio-Science, 36, 251-257 https://doi.org/10.2307/1310215
  37. Speer K., E. Guilyardi, and G. Madec. 2000. Southern Ocean transformation in a coupled model with and without eddy mass fluxes. Tellus, 52A, 554-565
  38. Takeda, S. 1998. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774-777 https://doi.org/10.1038/31674
  39. Talley, L.D. 1996. Antarctic Intermediate Water in the South Atlantic. p. 219-238. In: The South Atlantic: The Present and Past Circulation, ed. by G. Wefer, W.H. Berger, G. Siedler and D.J. Webb. Springer, Berlin
  40. Tomczak, M. and J.S. Godfrey. 1994. Regional Oceanography: An introduction. Elsevier Science, New York. 422 p
  41. Wada, E. 1980. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. p. 375-398. In: Isotope Marine Chemistry, ed. by E. Goldberg, Y. Horibe, and K. Saruhashi. Uchida Rokakuho, Tokyo
  42. Wada, E. and A. Hattori. 1978. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds. Geomicrobiol. J., 1, 85-101 https://doi.org/10.1080/01490457809377725
  43. Waser, N.A.D., D.H. Turpin, P.J. Harrison, B. Nielsen, and S.E. Calvert. 1998. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, and urea by a marine diatom. Limnol. Oceanogr., 43, 215-224 https://doi.org/10.4319/lo.1998.43.2.0215
  44. Whitehead, J.A. 1995. Thermohaline Ocean Processes and Models. Annu. Rev. Fluid Mech., 27, 89-113 https://doi.org/10.1146/annurev.fl.27.010195.000513
  45. Whitworth, T. and W.D. Nowlin. 1987. Water masses and currents of the Southern Ocean at the Greenwich meridian. J. Geophys. Res., 92, 6462-6467 https://doi.org/10.1029/JC092iC06p06462