DOI QR코드

DOI QR Code

Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1

  • Zang, Yun-Xiang (Department of Molecular Biotechnology, Konkuk University) ;
  • Kim, Jong-Hoon (Department of Molecular Biotechnology, Konkuk University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Kim, Doo-Hwan (Department of Molecular Biotechnology, Konkuk University) ;
  • Hong, Seung-Beom (Department of Molecular Biotechnology, Konkuk University)
  • Received : 2008.01.22
  • Accepted : 2008.02.11
  • Published : 2008.06.30

Abstract

Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines overexpressing CYP79F1 displayed phenotypes different from wild type with respect to the stem thickness as well as leaf width and shape. Glucosinolate contents of the transgenic plants were compared with those of wild type. In the MAM1 line M1-1, accumulation of aliphatic glucosinolates gluconapin and glucobrassicanapin significantly increased. In the CYP83A1 line A1-1, all the aliphatic glucosinolate levels were increased, and the levels of gluconapin and glucobrassicanapin were elevated by 4.5 and 2 fold, respectively. The three CYP79F1 transgenic lines exhibited dissimilar glucosinolate profiles. The F1-1 line accumulated higher levels of gluconapoleiferin, glucobrassicin, and 4-methoxy glucobrassicin. However, F1-2 and F1-3 lines demonstrated a decrease in the levels of gluconapin and glucobrassicanapin and an increased level of 4-hydroxy glucobrassicin.

Keywords

References

  1. Osbourn, A. E. (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821-1831. https://doi.org/10.1105/tpc.8.10.1821
  2. Brader, G., Dalgaard Mikkelsen, M., Halkier, B. A. and Palva, E. T. (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 46, 758-767. https://doi.org/10.1111/j.1365-313X.2006.02743.x
  3. Giamoustaris, A. and Mithen, R. (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 126, 347-353. https://doi.org/10.1111/j.1744-7348.1995.tb05371.x
  4. Vaughn, S. F., Palmquist, D. E., Duval, S. M. and Berhow, M. A. (2006) Herbicidal activity of glucosinolate-containing seedmeals. Weed Science 54, 743-748. https://doi.org/10.1614/WS-06-007R.1
  5. Keck, A. S. and Finley, J. W. (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr. Cancer Ther. 3, 5-12. https://doi.org/10.1177/1534735403261831
  6. Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., Talalay, P. and Lozniewski, A. (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[${\alpha}$]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. U.S.A. 99, 7610-7615. https://doi.org/10.1073/pnas.112203099
  7. Gamet-Payrastre, L., Li, P., Lumeau, S., Cassar, G., Dupont, M. A., Chevolleau, S., Gasc, N., Tulliez, J. and Terce, F. (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in Ht29 human colon cancer cells. Cancer Res. 60, 1426-1433.
  8. Fahey, J. W., Zalcmann, A. T. and Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  9. Grubb, C. D. and Abel, S. (2006) Glucosinolate metabolism and its control. Trends Plant Sci. 11, 89-100. https://doi.org/10.1016/j.tplants.2005.12.006
  10. Halkier, B. A. and Gershenzon, J. (2006) Biology and Biochemistry of Glucosinolates. Annu. Rev. Plant Biol. 57, 303-333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  11. Field, B., Cardon, G., Traka, M., Botterman, J., Vancanneyt, G. and Mithen, R. (2004) Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant physiol. 135, 828-839. https://doi.org/10.1104/pp.104.039347
  12. Kroymann, J., Textor, S., Tokuhisa, J. G., Falk, K. L., Bartram, S., Gershenzon, J. and Mitchell-Olds, T. (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 127, 1077-1088. https://doi.org/10.1104/pp.010416
  13. Textor, S., de Kraker, J., Hause, B., Gershenzon, J. and Tokuhisa, J. G. (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis thaliana. Plant Physiol. 144, 60-71. https://doi.org/10.1104/pp.106.091579
  14. Chen, S., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C. E., Hansen, C. H., Rasmussen, H., Pickett, J. A. and Halkier, B. A. (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33, 923-937. https://doi.org/10.1046/j.1365-313X.2003.01679.x
  15. Tantikanjana, T., Mikkelsen, M. D., Hussain, M., Halkier, B. A. and Sundaresan, V. (2004) Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants. Plant Physiol. 135, 840-848. https://doi.org/10.1104/pp.104.040113
  16. Bak, S. and Feyereisen, R. (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 127, 108-118. https://doi.org/10.1104/pp.127.1.108
  17. Hong, B. S., Kim, J. H., Kim, N. Y., Kim, B. G., Chong, Y. and Ahn J. H. (2007) Characterization of uridine-diphosphate dependent flavonoid glucosyltransferase from Oryza sativa. J. Biochem. Mol. Biol. 40, 870-874. https://doi.org/10.5483/BMBRep.2007.40.6.870
  18. Hansen, B. G., Kliebenstein, D. J. and Halkier, B. A. (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902-910. https://doi.org/10.1111/j.1365-313X.2007.03101.x
  19. Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J. and Mitchell-Olds, T. (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate- dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 681-693. https://doi.org/10.1105/tpc.13.3.681
  20. Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell-Olds, T. (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811-825. https://doi.org/10.1104/pp.126.2.811
  21. Campos de Quiros, H., Magrath, R., McCallum, D., Kroymann, J., Scnabelrauch, D., Mitchell-Olds, T. and Mithen, R. (2000) ${\alpha}$-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor. Appl. Genet. 101, 429-437. https://doi.org/10.1007/s001220051500
  22. Kang, J. Y., Ibrahim, K. E., Juvik, J. A., Kim, D. H. and Kang, W. J. (2006) Genetic and environmental variation of glucosinolate content in Chinese cabbage. HortSci. 41, 1382-1385.
  23. Zang, Y. X., Kim, D. H., Lim, M., Park, B. S. and Hong, S. B. (2008) Metabolic engineering of the indole glucosinolates in Chinese cabbage plants expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol. Cells. 25(2) (In press).
  24. Hansen, C. H., Wittstock, U., Olsen, C. E., Hick, A. J., Pickett, J. A. and Halkier, B. A. (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J. Biol. Chem. 276, 11078-11085. https://doi.org/10.1074/jbc.M010123200
  25. Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R. and Palme, K. (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13, 351-367. https://doi.org/10.1105/tpc.13.2.351
  26. Tantikanjana, T., Yong, J. W. H., Letham, D. S., Griffith, M., Ljung, K., Sandberg, G. and Sundaresan, V. (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev. 15, 1577-1588. https://doi.org/10.1101/gad.887301
  27. Haughn, G. W., Davin, L., Giblin, M. and Underhill, E. W. (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana: the glucosinolates. Plant Physiol. 97, 217-226. https://doi.org/10.1104/pp.97.1.217
  28. Hemm, M. R., Ruegger, M. O. and Chapple, C. (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15, 179-194. https://doi.org/10.1105/tpc.006544
  29. Shibaoka, H. (1974) Involvement of wall microtubules in gibberllin promotion and kinetin inhibition of stem elongation. Plant Cell Physiol. 15, 255-263.
  30. Mok, D. W. S. and Mok, M. C. (2001) Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 89, 89-118.
  31. Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montagu, M. and Schell, J. (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181-187. https://doi.org/10.1007/BF00267408
  32. Murray, H. G. and Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325. https://doi.org/10.1093/nar/8.19.4321
  33. Jefferson, R. A. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Bio. Rep. 5, 387-405. https://doi.org/10.1007/BF02667740

Cited by

  1. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa vol.276, pp.13, 2009, https://doi.org/10.1111/j.1742-4658.2009.07076.x
  2. Engineering Glucosinolates in Plants: Current Knowledge and Potential Uses vol.168, pp.6, 2012, https://doi.org/10.1007/s12010-012-9890-6
  3. MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus vol.27, pp.4, 2011, https://doi.org/10.1007/s11032-010-9444-y
  4. Glucosinolate biosynthetic genes in Brassica rapa vol.487, pp.2, 2011, https://doi.org/10.1016/j.gene.2011.07.021
  5. Metabolic Profiling in Chinese Cabbage (Brassica rapaL. subsp.pekinensis) Cultivars Reveals that Glucosinolate Content Is Correlated with Carotenoid Content vol.64, pp.21, 2016, https://doi.org/10.1021/acs.jafc.6b01323
  6. A Multi-Layered Screening Method to Identify Plant Regulatory Genes vol.11, pp.2, 2014, https://doi.org/10.1109/TCBB.2013.2296308
  7. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures vol.246, pp.1, 2017, https://doi.org/10.1007/s00425-017-2705-9
  8. Metabolic Engineering of Aliphatic Glucosinolates in Hairy Root Cultures of Arabidopsis thaliana vol.33, pp.3, 2015, https://doi.org/10.1007/s11105-014-0781-6
  9. Novel bioresources for studies ofBrassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production vol.11, pp.8, 2013, https://doi.org/10.1111/pbi.12095
  10. Metabolic engineering of indole glucosinolates in Chinese cabbage hairy roots expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1 vol.14, pp.4, 2009, https://doi.org/10.1007/s12257-008-0294-y
  11. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering vol.168, 2015, https://doi.org/10.1016/j.foodchem.2014.07.073
  12. A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of Brassica rapa ssp. pekinensis vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-016-0402-1
  13. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases vol.23, pp.1, 2017, https://doi.org/10.3390/molecules23010015
  14. Biotechnological approaches in glucosinolate production pp.16729072, 2018, https://doi.org/10.1111/jipb.12705
  15. A naturally occurring variation in the BrMAM-3 gene is associated with aliphatic glucosinolate accumulation in Brassica rapa leaves vol.5, pp.1, 2018, https://doi.org/10.1038/s41438-018-0074-6
  16. vol.163, pp.4, 2018, https://doi.org/10.1111/ppl.12691