DOI QR코드

DOI QR Code

Effect of metal ions on the secondary structure and activity of calf intestine phosphatase

  • Chen, Fengjuan (College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University) ;
  • Liu, Guoqi (College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University) ;
  • Xu, Zhihong (College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University) ;
  • Zeng, Zhengzhi (College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University)
  • Received : 2007.11.08
  • Accepted : 2007.12.18
  • Published : 2008.04.30

Abstract

Cobalt is an essential microelements in many biological processes involving enzymatic activity. We found that $Zn^{2+}$ and $Mg^{2+}$, which are in the active site of native calf intestine alkaline phosphatase (CIP), can be replaced by $Co^{2+}$ directly in solution. The effect of $Co^{2+}$ concentration on the substitution reaction was examined at ratios of [$Co^{2+}$]/[CIP] from 0:1 to 8:1. The quantity of $Zn^{2+}$ in CIP decreased progressively as the ratio was increased, but the amount of $Mg^{2+}$ changed in irrregular fashion. A series of active site models of the reaction mechanism of CIP are proposed. Low pH was found to promote the replacement of $Mg^{2+}$ by $Co^{2+}$. To understand how the substitution affects the enzyme, we also solved the secondary structure of CIP after reaction with $Co^{2+}$ in different conditions.

Keywords

References

  1. Coleman, J. E. and Gettins, P. (1983a) Molercular properties and mechanism of alkaline phosphatase: In Metal Ions in Biology. Spiro TG (ed) John Wiley and sons, New York, pp 153-217
  2. Coleman, J. E., Nakamura, I..and Chlebowski, J. F. (1983) 65ZnII, 115mCdII, 60CoII, and MgII binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. J. Biol. Chem. 258, 386-395
  3. Fernely, H. N (1971) Mammalian alkaline phosphatase in enzymes. Boyer PD (ed) Academic Press, New York, pp 417-447
  4. Prada, P. D., Loveland-Curtze, J. and Brenchley, J. E. (1996) Production of two extracellular alkaline phosphatases by a psychrophilic arthrobacter strain. Appl. Envir. Microbiol. 62, 3732-3738.
  5. Zappa, S., Rolland, J., Flament, L. D., Gueguen, Y., Boudrant, J. and Dietrich, J. (2001) Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon pyrococcus abyssi. Appl. Envir. Microbiol. 67, 4504-4511 https://doi.org/10.1128/AEM.67.10.4504-4511.2001
  6. Ayantika, G.,and Parames, C. S. (2007) Anti-oxidative effect of a protein from cajanus indicus L against acetaminophen-induced hepato-nephro toxicity. J. Biochem. Mol. Biol. 40, 1039-1049 https://doi.org/10.5483/BMBRep.2007.40.6.1039
  7. Kim, E. E., and Wycko, H. W. (1991) Reaction mechanism of alkaline phosphatase based on crystal structures: twometal ion catalysis. J. Mol. Biol. 218, 449-464 https://doi.org/10.1016/0022-2836(91)90724-K
  8. Llinas, P., Masella, M., Stigbrand, T., Ménez, A., Stura, E. A. and Du, M.H.L. (2006) Structural studies of human alkaline phosphatase in complex with strontium: implication for its secondary effect in bones. Protein Sci. 15, 1691-1700 https://doi.org/10.1110/ps.062123806
  9. Llinas, P., Stura, E. A., Menez, A., Kiss, Z., Stigbrand, T., Millan, J. L. and Du, M.H.L. (2005) Structural studies of human placental alkaline phosphatase in complex with functional ligands. J. Mol. Biol. 350, 441-451 https://doi.org/10.1016/j.jmb.2005.04.068
  10. Fosset, M., Chappelet-Tordo, D. and Lazdunski, M. (1974) Intestinal alkaline phosphatase physical properties and quaternary structure. Biochemistry 13, 1783-1787 https://doi.org/10.1021/bi00706a001
  11. Plock, D. J. and Vallee, B. L. (1962) Interaction of alkaline phosphatase of E. coli with metal ions and chelating agents. Biochemistry 1, 1039-1043 https://doi.org/10.1021/bi00912a014
  12. Ciancaglini, P., Pizauro, J. M., Leone, F. A. (1997) Dependence of divalent metal ions on phosphotransferase activity of osseous plate alkaline phosphatase. J. Inorg. Biochem. 66, 1-55 https://doi.org/10.1016/S0162-0134(96)00145-6
  13. Richard, A., Anderson, R. A. and Vallee B. L. (1977) Selective cobalt oxidation as a means to differentiate metal-binding sites of cobalt alkaline phosphatase. Biochemistry 16, 4388-4393 https://doi.org/10.1021/bi00639a009
  14. Mostafa, R. T., Seyed, H. M. and Bijan, R.(2006) Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy. J. Biochem. Mol. Biol. 39, 530-536 https://doi.org/10.5483/BMBRep.2006.39.5.530
  15. Zahra, S., Saman, H., Bijan, R., and Mohsen, N. G. (2006) Interaction of native and apo-carbonic nnhydrase with hydrophobic adsorbents: a comparative structure- function study. J. Biochem. Mol. Biol. 39, 636-641 https://doi.org/10.5483/BMBRep.2006.39.5.636
  16. Sreerama, N. and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252-260 https://doi.org/10.1006/abio.2000.4880
  17. Greenfield, N. J. (1995) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 235, 1-10 https://doi.org/10.1006/abio.1996.0084
  18. Sreerama, N. and Woody, R. W. (1993) A Self-Consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209, 32-44 https://doi.org/10.1006/abio.1993.1079
  19. Zheng, J. Y. Celeste, A. C., Vipin, K. R., Cheng, T. C., Joseph, J. D., and Roger, M. L.(2004) Secondary structure of organophosphorus hydrolase in solution and in Langmuir-Blodgett film studied by circular dichroism spectroscopy. J. Phys. Chem. B. 108, 17238-17242 https://doi.org/10.1021/jp0477396
  20. Valle, B. L. and Williams, R. J. P. (1968) Metalloenzymes: the entatic nature of their active sites. Pro. Natl. Acad. Sci. U.S.A. 59, 498-505. https://doi.org/10.1073/pnas.59.2.498
  21. Simpson, R. T., Vallee, B. L. and Tait, G. H. (1968) Alkaline phosphatase of escherichia coli: composition. Biochemistry 7, 4336-4342 https://doi.org/10.1021/bi00852a028
  22. Anderson, R., Bosron, W., Kennedy, F. and Vallee ,B. (1975) Role of magnesium in escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. U.S.A. 72, 2989-2993. https://doi.org/10.1073/pnas.72.8.2989
  23. Azem, A., Diamant, S. and Goloubinoff, P. (1994) Effect of divalent cations on the molecular structure of the GroEL oligome. Biochemistry 33, 6671-6675 https://doi.org/10.1021/bi00187a037
  24. Jakob, U., Meyer, I., Bugl, H., Andre, S., Bardwel, J. C. A. and Buchner, J. (1995) Structural organization of procaryotic and eucaryotic Hsp90. J. Biol. Chem. 270, 14412-14419 https://doi.org/10.1074/jbc.270.24.14412
  25. Sun, G. and Budde, R. J. A. (1997) Requirement for an additional divalent metal cation to activate protein tyrosine kinases. Biochemistry 36, 2139-2146 https://doi.org/10.1021/bi962291n
  26. Subramaniam, V., Bergenhem, N.C., Gafni, A. and Steel, D. G. (1995) Phosphorescence reveals a continued slow annealing of the protein core following reactivation of escherichia coli alkaline phosphatase. Biochemistry 34, 1133-1136 https://doi.org/10.1021/bi00004a005
  27. Trentham, D. R. and Gutfreund, H. (1968) The kinetics of the reaction of nitrophenyl phosphates with alkaline phosphatase from Escherichia coli. Biochem. J. 106, 455-460 https://doi.org/10.1042/bj1060455
  28. Wang, J., Stieglitz, K. A. and Kantrowitz, E. R. (2005) Metal specificity is correlated with two crucial active site residues in escherichia coli alkaline phosphatase. Biochemistry 44, 8378-8386 https://doi.org/10.1021/bi050155p
  29. Sailendra, N. S. and Nandini, G. (1996) Reversible unfolding of eschericha coli alkaline phosphatase: activity site can be reconsitituted by a number of pathways. Arch. Biochem. Biophys. 330, 174-180 https://doi.org/10.1006/abbi.1996.0239

Cited by

  1. Unfolding and inactivation of proteins by counterions in protein-nanoparticles interaction vol.145, 2016, https://doi.org/10.1016/j.colsurfb.2016.04.053
  2. Spectroscopic investigations on the interaction between cadmium telluride semiconductor nanoparticle and bovine alkaline phosphatase pp.1532-2289, 2019, https://doi.org/10.1080/00387010.2018.1561472