DOI QR코드

DOI QR Code

Protective effect of p53 in vascular smooth muscle cells against nitric oxide-induced apoptosis is mediated by up-regulation of heme oxygenase-2

  • Kim, Young-Myeong (Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Choi, Byung-Min (Department of Surgery, University of Pittsburgh Medical Center) ;
  • Kim, Yong-Seok (Department of Surgery, Chung-Ang University College of Medicine) ;
  • Kwon, Young-Guen (Department of Biochemistry, College of Sciences, Yonsei University) ;
  • Kibbe, Melina R. (Department of Surgery, University of Pittsburgh Medical Center) ;
  • Billiar, Timothy R. (Department of Surgery, University of Pittsburgh Medical Center) ;
  • Tzeng, Edith (Department of Surgery, University of Pittsburgh Medical Center)
  • Received : 2007.12.24
  • Accepted : 2007.12.24
  • Published : 2008.02.29

Abstract

The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygen-ase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.

Keywords

References

  1. Kim, Y. M., Bombeck, C. A. and Billiar, T. R. (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ. Res. 84, 253-256 https://doi.org/10.1161/01.RES.84.3.253
  2. Minor, R. L. Jr., Myers, P. R., Guerra, R. Jr., Bates, J. N. and Harrison, D. G. (1990) Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J. Clin. Invest. 86, 2109-2116 https://doi.org/10.1172/JCI114949
  3. Moncada, S., Palmer, R. M. and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142
  4. Smith, J. D., McLean, S. D. and Nakayama, D. K. (1998) Nitric Oxide causes apoptosis in pulmonary vascular smooth muscle cells. J. Surg. Res. 79, 121-127 https://doi.org/10.1006/jsre.1998.5405
  5. Bennett, M. R. (1999) Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc. Res. 41, 361-368 https://doi.org/10.1016/S0008-6363(98)00212-0
  6. McCarthy, N. J. and Bennett, M. R. (2000) The regulation of vascular smooth muscle cell apoptosis. Cardiovasc. Res. 45, 747-755 https://doi.org/10.1016/S0008-6363(99)00275-8
  7. Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554 https://doi.org/10.1146/annurev.pharmtox.37.1.517
  8. McCoubrey, W. K., Jr., Huang, T. J. and Maines, M. D. (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725-732 https://doi.org/10.1111/j.1432-1033.1997.00725.x
  9. Kim, Y. M., Bergonia, H. A., Müller, C., Pitt, B. R., Watkins, W. D. and Lancaster, J. R. Jr. (1995) Nitric oxide and intracellular heme. Adv. Pharmacol. 34, 277-291 https://doi.org/10.1016/S1054-3589(08)61092-3
  10. Morita, T., Perrella, M. A., Lee, M. E. and Kourembanas S. (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. U. S. A. 92, 1475-1479 https://doi.org/10.1073/pnas.92.5.1475
  11. Lowe, S. W. and Lin, A. W. (2000) Apoptosis in cancer. Carcinogenesis 21, 485-495 https://doi.org/10.1093/carcin/21.3.485
  12. Ianzini, F., Bertoldo, A., Kosmacek, E. A., Phillips, S. L. and Mackey, M. A. (2006) Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int. 6, 11 https://doi.org/10.1186/1475-2867-6-11
  13. Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T. and Lu, X. (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell. 8, 781-794 https://doi.org/10.1016/S1097-2765(01)00367-7
  14. Soussi, T. and Lozano, G. (2005) p53 mutation heterogeneity in cancer. Biochem. Biophys. Res. Commun. 331, 834-842 https://doi.org/10.1016/j.bbrc.2005.03.190
  15. Bennett, M. R., Evan, G. I. and Schwartz, S. M. (1995) Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and -independent pathways. Circ. Res. 77, 266-273 https://doi.org/10.1161/01.RES.77.2.266
  16. Kim, Y. M., Chung, H. T., Simmons, R. L. and Billiar, T. R. (2000) Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J. Biol. Chem. 275, 10954-10961 https://doi.org/10.1074/jbc.275.15.10954
  17. Kim, Y. M., Bergonia, H. and Lancaster, J. R. Jr. (1995) Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 374, 228-232 https://doi.org/10.1016/0014-5793(95)01115-U
  18. Basuroy, S., Bhattacharya, S., Tcheranova, D., Qu, Y., Regan, R. F., Leffler, C. W. and Parfenova, H. (2006) HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-$\alpha$ in cerebral vascular endothelial cells. Am. J. Physiol. Cell. Physiol. 291, C897-908 https://doi.org/10.1152/ajpcell.00032.2006
  19. Duridanova, D. B., Gagov, H. S. and Bolton, T. B. (2005) HO-1 induction in the guinea-pig stomach: protection of smooth muscle functional performance during cobalt-induced oxidative stress. Cell Mol. Biol. (Noisy-le-grand). 51, 495-506
  20. Bennett, M. R., Evan, G. I. and Schwartz, S. M. (1995) Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and -independent pathways. Circ. Res. 77, 266-273 https://doi.org/10.1161/01.RES.77.2.266
  21. Wahl, A. F., Donaldson, K. L., Fairchild, C., Lee, F. Y., Foster, S. A., Demers, G. W. and Galloway, D. A. (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat. Med. 2, 72-79 https://doi.org/10.1038/nm0196-72
  22. Kaina, B. (2003) DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol. 66, 1547-1554 https://doi.org/10.1016/S0006-2952(03)00510-0
  23. Yee, E. L., Pitt, B. R., Billiar, T. R. and Kim, Y. M. (1996) Effect of nitric oxide on heme metabolism in pulmonary artery endothelial cells. Am. J. Physiol. 271, L512-L518

Cited by

  1. 15-Deoxy-Δ12,14-prostaglandin J2induces p53 expression through Nrf2-mediated upregulation of heme oxygenase-1 in human breast cancer cells vol.48, pp.9, 2014, https://doi.org/10.3109/10715762.2014.897343
  2. Gastroprotective effect of orexin-A and heme oxygenase system vol.193, pp.2, 2015, https://doi.org/10.1016/j.jss.2014.08.048
  3. Carbon Monoxide-Sensitive Apoptotic Death of Erythrocytes vol.111, pp.5, 2012, https://doi.org/10.1111/j.1742-7843.2012.00915.x
  4. Effects of Losartan, HO‐1 Inducers or HO‐1 Inhibitors on Erectile Signaling in Diabetic Rats vol.6, pp.12, 2009, https://doi.org/10.1111/j.1743-6109.2009.01517.x
  5. Enhanced Translation of Heme Oxygenase-2 Preserves Human Endothelial Cell Viability during Hypoxia vol.285, pp.13, 2010, https://doi.org/10.1074/jbc.M109.077230
  6. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151017974
  7. Regulation of reactive oxygen species by p53: implications for nitric oxide-mediated apoptosis vol.298, pp.6, 2010, https://doi.org/10.1152/ajpheart.00535.2009