Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese

망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거

  • Yu, Mok-Ryun (Department of Environmental Engineering, Kwangwoon University) ;
  • Hong, Soon-Chul (Department of Environmental Engineering, Kwangwoon University) ;
  • Yang, Jae-Kyu (Division of General Education, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
  • Published : 2008.06.30

Abstract

Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.

여러 조건으로 제조한 망간첨착활성탄(Mn-AC)을 유기물과 무기물이 함께 오염되어 있는 합성 폐수처리에 적용하였다. 유기물과 무기물의 대표물질로 각각 페놀과 3가 비소를 선정하였다. Mn-AC의 물리화학적 특성과 안정성을 분석한 후, 회분식 반응조에서 활성탄(AC) 및 Mn-AC에 의한 3가 비소 및 페놀 흡착 특성을 조사하였다. Mn-AC의 안정성 평가를 위해 pH 2에서 4의 산성용액에서 용출되는 망간의 농도로부터 평가하였다. pH 3 이하에서는 Mn-AC로부터 많은 양의 망간이 용출되었지만, pH 4에서는 청정지역 허용기준인 3 ppm 이하의 농도로 용출되었다. Mn-AC에 대한 X-선 회절기 분석결과 첨착된 망간은 $Mn_2O_3$로 밝혀졌다. Mn-AC를 이용한 3가 비소와 페놀의 동시처리 실험결과 3가 비소는 낮은 pH에서 AC보다 높은 산화율을 보였으나, 중성 이상의 pH에서는 AC가 더욱 높은 산화율을 보였다. 활성탄에 망간을 첨착시킴으로서, 비표면적이 13% 감소하였고 이로서 Mn-AC에 의한 페놀제거율은 AC에 비해 8% 정도 줄어들었다. 3가 비소 산화 및 페놀 흡착실험을 통하여 Mn-AC는 복합오염물을 갖는 폐수의 동시처리에 적용될 수 있음을 알 수 있었다.

Keywords

References

  1. 김광섭, 김병권, 홍순철, 장윤영, 양재규, 2006, 금속산화물함유, 흡착제들의 독성 비소 제거능 비교, 대한환경공학회 추계학술연구발표회, 강릉대학교, p. 631-637
  2. 성혜련, 공성호, 서승원, 김민경, 2004, 화약류와 중금속으로 복합오염된 토양의 동시처리, 대한환경공학회 추계학술연구발표회, 전북대학교, p. 1484-1490
  3. 송기훈, 2006, 철 및 망간코팅사의 제조 조건 및 비소 제거 특성에 관한 연구, 박사학위청구논문, 광운대학교
  4. 송대성, 이종운, 고일원, 김경웅, 2007, 국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동연구, 자원환경지질, 40(5), 575-585
  5. 이송우, 배상규, 권준호, 나영수, 안창덕, 윤영삼, 송승구, 2005, 활성탄의 세공구조와 Acetone Vapor 흡착특성의 상관관계, 대한환경공학회지, 27(6), 620-625
  6. 이정주, 박재우, 2001, 유기오염물질과 중금속의 동시제거를 위한 흡착제로서의 Organobentonite에 관한 연구, 대한환경공학회 춘계학술연구발표회, 이화여자대학교, 111-112
  7. Bhumbla, D.K. and Keefer, R.E., 1994, Arsenic mobilization and bioavailability in soil. In Nriagu, J. O.(ed.) Arsenic in the environment, Part I: Cycling and characterization, Wiley-Intersciedce, New York, 51-82
  8. Birgit, D., Rainer, W., and Holger. W., 2004, Sorption materials for arsenic removal from water: a comparative study, Water Research, 38, 2948-2954 https://doi.org/10.1016/j.watres.2004.04.003
  9. Bruce A. Manning, Scott E. Fendorf, Benjamin Bostick and Donald L. Suarez, 2002, Arsenic(III) oxidation and Arsenic(V) adsorption reactions on synthetic birnessite, Environ. Sci. Technol, 36, 976-981 https://doi.org/10.1021/es0110170
  10. Chang, Y.Y., Kim, K.S., Jung, J.H., Yang, J.K., and Lee, S.M., 2006, Application of Iron-Coated Sand and Manganese-Coated Sand in the Treatment of Both As(III) and As(V), Water Science and Technology, in press
  11. Lee, Y.H., Um, I.H., and Yoon, J.Y., 2003a, Arsenic(III) Oxidation by Iron(VI) (Ferrate) and Subsequent Removal of Arsenic (V) by Iron(III) Coagulation, Environ. Sci. Technol., 37, 5750-5756 https://doi.org/10.1021/es034203+
  12. Lee, Y.H., Yoon, J.Y., and Gunten, U.V., 2005b, Kinetics of the Oxidation of Phenols and Phenolic Endocrine Disruptors during Water Treatment with Ferrate(Fe(VI)), Environ. Sci. Technol., 39, 8978-8984 https://doi.org/10.1021/es051198w
  13. Lin, K., Cooper, W.J., Nickelsen, M.G., Kurucz, C.N., and Waite, T.D., 1995, Decomposition of aqueous solutions of phenol using high energy electron beam irradiation-A large scale study, Appl. Radiat. Isot., 46, 1307-1316 https://doi.org/10.1016/0969-8043(95)00236-7
  14. Moore J.N., Walker J.R., and Hayes T.H., 1990, Reaction scheme for the oxidation of As(III) to As(V) by birnessite, Clays Clay Miner, 38, 549-555 https://doi.org/10.1346/CCMN.1990.0380512
  15. Nakagawa, K., Namba, A., Mukai, S.R., and Tamon, H., 2004, Adsorption of Phenol and Reactive dye from Aqueous Solution on Activated Carbons Derived from Solid Wastes, Water Research, 38(7), 1791-1798 https://doi.org/10.1016/j.watres.2004.01.002
  16. Nourbakhsh, M., Sag, Y., Ozer, D., Aksu, Z., Katsal, T., and Calgar, A., 1994, A comparative study of various biosorbents for removal of chromum(VI) ions from industrial wastewater: Proeess Biochem., 29, 1-5 https://doi.org/10.1016/0032-9592(94)80052-9
  17. Oscarson, D.W., Huang, P.M., and Liaw, W.K., 1981, Role of manganese in the oxidation of arsenic by freshwater lake sediments, clays clay Miner, 29, 219-225 https://doi.org/10.1346/CCMN.1981.0290308
  18. Reed, B.E., Vaughan, R.L, and Jiang, L., 2000, As(III), As(V), Hg, and Pb Removal by Fe-Oxide Impregnated Activated Carbon, Journal of Environmental Engineering, 126(9), 869-873 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(869)
  19. Chiu, V.Q. and Hering, J.G., 2000, Arsenic adsorption and oxidation at mangnite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species, Environ. Sci. Technol, 34, 2029-2034 https://doi.org/10.1021/es990788p
  20. Vaughan, R.L. and Reed, B.E., 2005, Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach, Water Research, 39(6), 1005-1014 https://doi.org/10.1016/j.watres.2004.12.034
  21. Walsh, L.M. and Keeney, D.R., 1975, Behavior and phytotoxicity of inorganic arsenicals in soil. In Woolson, E. A. (ed.) Arsenical pesticides. Americal Chemical Society. Washington, DC., 35-52