토양에 유입된 카드뮴, 구리, 아연의 시간에 따른 분배 계수의 변화

Aging Effects On Partitioning Coefficients of Cd, Cu, and Zn in Metal-spiked Soils

  • Kim, Bo-Jeong (The Center for NanoBioEarth, Department of Geosciences, Virginia Tech) ;
  • McBride, Murray B. (Department of Crop and Soil Sciences, Cornell University)
  • 발행 : 2008.10.31

초록

금속이 염 용액 형태로 토양에 유입될 때, 그 금속의 용해도는 시간이 지남에 따라 감소하는 경향(aging)을 보이는데, 이러한 시간 의존성 외에 토양 내 금속 용해도의 변화에 영향을 미치는 또 다른 요인들에 대한 고찰은 아직 미비한 상태이다. 본 연구에서는 물리화학적 성질이 다른 5 종류의 토양 (히스토졸, 앤디졸, 옥시졸, 미세입자 알피졸, 조대입자 알피졸)에 여러 비율의 카드뮴(2.5-20 mg ${kg}^{-1}$)/ 구리(50-400 mg${kg}^{-1}$)/ 아연(50-400 mg ${kg}^{-1}$) 염 용액을 혼합하여, 상온에서 1년 동안 토양의 성질, 금속의 종류, 금속의 농도에 따른 용해도 변화관찰을 시도하였다. 그 결과, 히스토졸에서는 카드뮴이, 앤디졸에서는 구리가, 미세입자 알피졸에서는 아연이 가장 높은 분배 계수를 보였고, 옥시졸과 조대입자 알피졸에서는 모든 금속들이 가장 낮은 분배 계수를 나타내었다. 또한, 카드뮴과 아연의 경우 토양의 종류와는 무관하게 시간에 따른 분배 계수의 증가를 보였지만, 구리의 경우 토양 내 유입된 후 일주일 부터는 이러한 경향성를 찾아보기 어려웠다. 구리는 토양의 유기물이 많을 경우에는 빠른 흡착성을 보이지만, 토양수에 녹아있는 유기물이 많을 경우에는 그 흡착 특성이 제한됨을 관찰하였다. 더욱이, 흡수력이 높은 토양의 경우 금속의 분배 계수는 유입된 금속의 양과는 무관할 뿐만 아니라, 높은 농도로 처리된 토양의 금속 분배 계수가 낮은 농도로 처리된 토양의 분배계수와 유사해지기 까지는 더 오랜 시간이 요구되는 반면, 낮은 흡수력을 가진 토양의 경우에는 시간보다는 금속의 초기 유입양이 분배 계수 결정에 더욱 큰 영향을 미치는 것으로 밝혀졌다. 본 연구를 통해, 토양에 유입된 금속의 용해도 변화는 시간 뿐만 아니라, 토양의 성질, 금속의 종류와 농도에도 상당히 의존함을 입증하였다.

Temporal changes of metal solubility have been repeatedly observed in soils equilibrated with metal salt solutions. This phenomenon is known as aging, yet factors that affect the degree of metal aging remain largely unexamined. In this study, we compared the extent of aging on metal partitioning depending on soil, metal, and metal loading. Five soils spiked with four levels of Cd (2.5-20 mg ${kg}^{-1}$), Cu, and Zn (50-400 mg ${kg}^{-1}$) salt solutions were aged in the laboratory up to 1 year. The partitioning coefficient ($K_d$) of each metal was calculated from the ratio of total to dissolved metal concentration in samples collected at times ranging from 1 day to 1 year. The highest $K_d$ values for Cd, Cu and Zn were recorded in a Histosol, Andisol, and fine-textured Alfisol, respectively, whereas the lowest $K_d$ was recorded for an Oxisol and coarsetextured Alfisol. For all soils, a pattern of increasing Kd with aging was evident for Cd and Zn, but not Cu. Rapid Cu sorption was limited when dissolved organic matter was high in soils. In highly-retentive soils, $K_d$ values seemed to be insensitive to metal loading, although a longer period was required for the higher metal loadings to reach the same degree of metal aging as the lower loadings. In soils with low sorption capacity, the $K_d$ values were determined more by metal loading than by aging. Therefore, marked differences can be expected in the degree of metal aging in spiked soils by the soil type, metal and amount of metal added.

키워드

참고문헌

  1. Allison, L.E., 1965, Organic carbon, In: C.A. Black (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties, American Society of Agronomy, Madison, WI, p. 1372
  2. Benedetti, M.F., Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., and Koopal, L.K., 1995, Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model, Environ. Sci. Technol., 29, 446-457 https://doi.org/10.1021/es00002a022
  3. Clark, C.J. and McBride, M.B., 1984, Chemisorption of Cu (II) and Co (II) on allophane and imogolite, Clays Clay Miner., 32, 300-310 https://doi.org/10.1346/CCMN.1984.0320408
  4. Coffin, D.E., 1961, A method for the determination of free iron in soils and clays, Can. J. Soil Sci., 43, 7-17 https://doi.org/10.4141/cjss63-002
  5. Giller, K.E., Witter, E., and McGrath, S.P., 1998, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review, Soil Biol. Biochem., 30, 1389-1414 https://doi.org/10.1016/S0038-0717(97)00270-8
  6. Gillman, G.P., 1979, A proposed method for the measurement of exchange properties of highly weathered soils, Aust. J. Soil Res., 17, 129-139 https://doi.org/10.1071/SR9790129
  7. Jacobson, A.R., McBride, M.B., Baveye, P., and Steenhuis, T.S., 2005, Environmental factors determining the trace-level sorption of silver and thallium to soils, Sci. Total Environ., 345, 191-205 https://doi.org/10.1016/j.scitotenv.2004.10.027
  8. Kandeler, E., Kampichler, C., and Horak, O, 1996, Influence of heavy metals on the functional diversity of soil microbial communities, Biol. Fert. Soils, 23, 299-306 https://doi.org/10.1007/BF00335958
  9. Kinniburgh, D.G., Jackson, M.L., and Syers, J.K., 1976, Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum, Soil Sci. Soc. Am. J., 40, 796-799 https://doi.org/10.2136/sssaj1976.03615995004000050047x
  10. Lock, K. and Janssen, C.R., 2003a, Influence of aging on copper bioavailability in soils, Environ. Toxicol. Chem., 22, 1162-1166 https://doi.org/10.1897/1551-5028(2003)022<1162:IOAOCB>2.0.CO;2
  11. Lock, K. and Janssen, C.R., 2003b, Influence of ageing on zinc bioavailability in soils, Environ. Pollut., 126, 371-374 https://doi.org/10.1016/S0269-7491(03)00232-X
  12. Lopes, A.S. and Cox, F.R., 1977, A survey of the fertility status of surface soils under "Cerrado" vegetation in Brazil, Soil Sci. Soc. Am. J., 41, 742-747 https://doi.org/10.2136/sssaj1977.03615995004100040026x
  13. Luo, Y. and Rimmer, D.L., 1995, Zinc-copper interaction affecting plant growth on a metal-contaminated soil, Environ. Pollut., 88, 79-83 https://doi.org/10.1016/0269-7491(95)91050-U
  14. McBride, M.B., 1989, Reactions controlling heavy metal solubility in soils, In: B.A. Stewart (ed.), Advances in Soil Science, Springer-Verlag, New York, 10, p. 1-56
  15. McBride, M.B., 2000, Chemisorption and precipitation reactions, In: M.E. Sumner (ed.), Handbook of Soil Science, CRC Press, New York, p. B265-B302
  16. McBride, M.B., 2001, Cupric ion activity in peat soil as a toxicity indicator for maize, J. Environ. Qual., 30, 78-84 https://doi.org/10.2134/jeq2001.30178x
  17. McLaren, R.G. and Crawford, D.V., 1974, Studies on soil copper III. Isotopically exchangeable copper in soils, J. Soil Sci., 25, 111-119 https://doi.org/10.1111/j.1365-2389.1974.tb01108.x
  18. Pedersen, M.B. and van Gestel, C.A.M., 2001, Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination, Ecotoxicol. Environ. Saf., 49, 54-59 https://doi.org/10.1006/eesa.2001.2043
  19. Renella, G., Ortigoza, A.L.R., Landi, L., and Nannipieri, P., 2003, Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose ($ED_{50}$), Soil Biol. Biochem., 35, 1203-1210 https://doi.org/10.1016/S0038-0717(03)00181-0
  20. Stevens, D.P., McLaughlin, M.J., and Heinrich, T., 2003, Determining toxicity of lead and zinc runoff in soils: Salinity effects on metal partitioning and on phytotoxicity, Environ. Toxicol. Chem., 22, 3017-3024 https://doi.org/10.1897/02-290
  21. Stevenson, F.J., 1977, Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration method, Soil Sci., 123, 10-17 https://doi.org/10.1097/00010694-197701000-00002
  22. Stuczynski, T.I., McCarty, G.W., and Siebielec, G., 2003, Response of soil microbial activities to cadmium, lead, and zinc salt amendments, J. Environ. Qual., 32, 1346-1355 https://doi.org/10.2134/jeq2003.1346
  23. Temminghoff, E.J.M, Van Der Zee, S.E.A.T.M., and De Haan, F.A.M., 1997, Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter, Environ. Sci. Technol., 31, 1109-1115 https://doi.org/10.1021/es9606236
  24. Van Raij, B. and Peech, M., 1972, Electrochemical properties of some oxisols and alfisols of the tropics, Soil Sci. Soc. Amer. Proc., 36, 587-593 https://doi.org/10.2136/sssaj1972.03615995003600040027x
  25. Weng, L., Temminghoff, E.J.M., Lofts, S., Tipping, E., and Van Riemsdijk, W.H., 2002, Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil, Environ. Sci. Technol., 36, 4804-4810 https://doi.org/10.1021/es0200084
  26. White, M.C. and Chaney, R.L., 1980, Zinc, Cadmium and Manganese uptake by soybean from two zinc- and cadmiumamended coastal plain soils, Soil Sci. Soc. Am. J., 44, 308-313 https://doi.org/10.2136/sssaj1980.03615995004400020022x