Characterization and Feasibility Study of the Soil Washing Process Applying to the Soil Having High Uranium Concentration in Korea

우라늄 함량이 높은 국내 토양에 대한 토양학적 특성 규명 및 토양세척법의 적용성 평가

  • Chang, See-Un (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Min-Hee (Department of Environmental Geosciences, Pukyong National University)
  • 장세은 (부경대학교 환경해양대학 환경지질과학과) ;
  • 이민희 (부경대학교 환경해양대학 환경지질과학과)
  • Published : 2008.10.31

Abstract

The physicochemical properties of soils having high uranium content, located around Duckpyungri in Korea, were investigated and the lab scale soil washing experiments to remove uranium from the soil were preformed with several washing solutions and on various washing conditions. SPLP (Synthetic Precipitation Leaching Procedure), TCLP (Toxicity Characteristic Leaching Procedure), and SEP (Sequential Extraction Procedure) for the soil were conducted and the uranium concentration of the extracted solution in SPLP was higher than Drinking Water Limit of USEPA (30 ${\mu}g$/L), suggesting that the continuous dissolution of uranium from soil by the weak acid rain may generate the environmental pollution around the research area. For the soil washing experiments, the uranium removal efficiency of pH 1 solution for S2 soil was about 80 %, but dramatically decreased as pH of solution was > 2, suggesting that strong acidic solutions are available to remove uranium from the soil. For solutions with 0.1M of HCl and 0.05 M of ${H_2}{SO_4}$, their removal efficiencies at 1 : 1 of soil vs. washing solution ratio were higher than 70%, but the removal efficiencies of acetic acid, and EDTA were below 30%. At 1 : 3 of soil vs. solution, the uranium removal efficiencies of 0.1M HCl, 0.05 M ${H_2}{SO_4}$, and 0.5M citric acid solution increased to 88%, 100%, and 61% respectively. On appropriate washing conditions for S2 soil such as 1 : 3 ratio for the soil vs. solution ratio, 30 minute for washing time, and 2 times continuous washing, TOC (Total Organic Contents) and CEC (Cation Exchange Capacity) for S2 soil were measured before/after soil washing and their XRD (X-Ray Diffraction) and XRF (X-Ray Fluorescence) results were also compared to investigate the change of soil properties after soil washing. TOC and CEC decreased by 55% and 66%, compared to those initial values of S2 soil, suggesting that the soil reclaimant may need to improve the washed soils for the cultivated plants. Results of XRF and XRD showed that the structural change of soil after soil washing was insignificant and the washed soil will be partially used for the further purpose.

우라늄 함량이 높은 흑색 셰일 및 점판암이 주요 기반암인 괴산군 청천면 덕평리 일대 토양의 물리/화학적 특성을 규명하였고, 토양으로부터 우라늄을 제거하기위한 다양한 세척용액 및 세척조건을 적용한 실내 세척 실험을 실시하여, 토양 세척법이 우라늄 함량이 높은 토양으로부터 우라늄을 제거하는데 효과적인 방법임을 입증하였다. 총 8지점 토양 시료의 우라늄 농도를 분석하여 인공강우 용출실험(SPLP), 독성물질 용출실험(TCLP)을 실시한 결과 가장 우라늄함량이 높은 S2 토양의 경우 SPLP 용출 농도가 USEPA 음용수 기준치(30 ${\mu}g$/L)를 초과하여 토양으로부터 주변수계로의 지속적인 오염 가능성이 있는 것으로 나타났으며, 연속추출실험(SEP) 결과 약산 강우에 의해 토양으로부터 우라늄 용출이 발생할 수 있는 것으로 판단되었다. 토양으로부터 우라늄을 제거하기위하여 다양한 세척액과 세척조건을 적용하여 토양 세척 실험을 실시한 결과, pH 1인 산성용액, 염산 0.1 M 용액, 황산 0.05 M 용액, 구연산 0.5M 용액을 세척액으로 사용하는 경우 우라늄 제거 효율이 80% 이상이었으며, 아세트산과 EDTA 용액의 경우 30%이하의 낮은 제거율을 나타내었다. 토양/세척액 비율은 1 : 3, 세척 시간을 30분, 토양 당 반복 세척 회수를 2회로 설정하여 위의 세척용액들을 이용하는 경우, 실제 우라늄 함량이 매우 높은 S2 토양 주변 현장에서 토양 세척법이 우라늄 제거에 효과적으로 적용될 수 있을 것으로 판단되었다. 세척 전/후 토양의 총유기탄소함량(TOC), 양이온 교환 능력(CEC)을 측정하였고, X-선형광분석(XRF)과 X-선회절분석(XRD)을 실시하여 비교함으로써 세척 후 토양 특성 변화를 규명하였다. 세척 후 토양의 TOC와 CEC가 각각 55%, 66%까지 감소하여 세척한 토양을 작물재배용으로 재사용할 경우 적절한 개량제를 첨가하는 것이 바람직할 것으로 나타났다. 세척 전/후 토양의 XRF 및 XRD 분석 결과, 산세척에 의한 토양의 주요 성분과 광물 구조 변화는 심각하지 않은 것으로 나타나 pH 회복을 위한 추가 물 세척 후 세척 토양을 재활용 할 수 있을 것으로 판단되었다.

Keywords

References

  1. 국립환경연구원, 2001, 지하수중 방사성물질 함유실태에 관한 조사연구, 최종 보고서
  2. 김정대, 남궁완, 2005, 토양세척용매의 종류 및 농도에 따른 폐금속광산 폐기물 내 중금속의 추출특성, 대한자원공학회, 787-798
  3. 김종환, 1982, 한국의 지질과 광물자원, 제 15장 우라늄, 연세대 김옥준교수 정년퇴입기념 논문집, 454-458
  4. 전효택, 정명채, 1991, 함우라늄 흑색셰일 분포지역에서의 유독성원소들의 분산에 관한 지구화학적 연구, 대한광산학회, 24(3), 245-260
  5. 전효택, 제현국, 2004, 중부 옥천대에서 지질방사능 위해성평가를 위한 광역적 라돈농도 조사, 추계학술발표회 논문집, 한국지구시스템학회, p. 3-6
  6. 정명채, 1994, 토양중의 중금속 연속추출방법과 사례연구, 자원환경지질, 27(5), 469-477
  7. 한국지질자원연구원, 2002, 지질정보검색시스템, 괴산 1:50,000 지질도 검색
  8. 한정희, 박계헌, 1996, 대전 지역 지하수에 함유된 우라늄 및 라돈의 함량, 자원환경지질, 29, 589-595
  9. Abdelouas, A., Lutze, W., and Nuttall, E., 1998, Chemical reactions of uranium in ground water at a mill tailings site, J. Contamin. Hydrol., 34, 343-361 https://doi.org/10.1016/S0169-7722(98)00097-7
  10. Chau, N.D. and Chrusciel, E., 2007, Leaching of technologically enhanced nuturally occurring radioactive materials, Radiation and Isotopes, 65, 968-974 https://doi.org/10.1016/j.apradiso.2007.03.009
  11. Choy, C.C., Korfiatis, G.P., and Meng, X., 2006, Removal of depleted uranium from contaminated soils, J. Hazard. Mater., 136, 53-60 https://doi.org/10.1016/j.jhazmat.2005.11.011
  12. Dermont, G., Bergeron, M., Mercier, G., and Lafleche, M.R., 2008, Soil washing for metal removal: A review of physical/chemical technologies and field applications, J. Hazard. Mater., 152, 1-31 https://doi.org/10.1016/j.jhazmat.2007.10.043
  13. Galindo, C., Mougin, L., Fakhi, S., Nourreddine, A., Lamghari, A., and Hannache, H., 2007, Distribution of naturally occurring radionuclides (U,Th) in Timahdit black shale (Morocco), J. Environ. Radio., 92, 41-54 https://doi.org/10.1016/j.jenvrad.2006.09.005
  14. Jang, M., Hwang, J.S., and Choi, S.I., 2007, Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines, Chemosphere, 66, 8-17 https://doi.org/10.1016/j.chemosphere.2006.05.056
  15. Kantar, C. and Honeyman, B.D., 2006, Citric acid enhanced remediation of soils contaminated with uranium by soil flushing and soil washing, J. Environ. Eng., 132(2), 247-255 https://doi.org/10.1061/(ASCE)0733-9372(2006)132:2(247)
  16. Lee, J.U., Kim, S.M., Kim, K.W., and Kim, I.S., 2005, Microbial removal of uranium in uranium-bearing black shale, Chemosphere, 59, 147-154 https://doi.org/10.1016/j.chemosphere.2004.10.006
  17. Lee, M., Paik, I.S., Do, W., Kim, I., and Lee, S., 2007, Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea, Environmental Geochemistry and Health, 29, 319-329 https://doi.org/10.1007/s10653-007-9093-1
  18. Lenhart, J.J., Cabaniss, S.E., Maccarthy, P., and Honeyman, B.D., 2000, Uranium(VI) complexation with citric, humic and fulvic acids, Radiochim. Acta, 88, 345-353 https://doi.org/10.1524/ract.2000.88.6.345
  19. Li, X., Coles, B.G., Ramsey, M.H., and Thornton, I., 1994, Sequential extraction of soils for multielement analysis by ICP-AES, Chem. Geol. 124(1-2), 109-123
  20. Mann, M.J., 1999, Full-scale and pilot-scale soil washing, J. Hazard. Mater., 66, 119-136 https://doi.org/10.1016/S0304-3894(98)00207-6
  21. Nishita, H., Wallace, A., and Romney, E. M., 1978, Radionuclide uptake by plants, U.S. Nuclear Regulatory Commission, NUREG/CR0336, UCLA 12-1158
  22. Moutsatsou, A., Gregou, M., Matsas, D., and Protonotarios, V., 2006, Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities, Chemosphere, 63, 1632-1640 https://doi.org/10.1016/j.chemosphere.2005.10.015
  23. Raskin, I. and Ensley, B.D., 2000, Phytoremediation of Toxic Metals, John Willey & Sons, Inc.
  24. Schulz, R.K., 1965, Soil chemistry of radionuclides. Health Phys. 11, 1317-1324 https://doi.org/10.1097/00004032-196512000-00008
  25. Seaman, J.C., Meehan, T., and Bertsch, P.M., 2001, Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments, J. Environ. Qual., 30, 1206-1213 https://doi.org/10.2134/jeq2001.3041206x
  26. Shanbhag, P.M. and Choppin, G.R., 1981, Binding of Uranyl by humic acid. J. Inorg. Nucl. Chem., 43, 3368-3372
  27. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 844-851 https://doi.org/10.1021/ac50043a017
  28. U, A.K., Song, K.J., and Kim, T.S., 1979, Uranium levels in soil and plant, and estimation of its intake by the residents at the uranium deposited area, J. Kor. Agricul. Chem. Soc., 22(4)
  29. USEPA, 1993, Integrated Risk Information system(IRIS) on Uranium, Soluble Salt, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of research and development, Cincinnati, OH
  30. USEPA, 1994, Toxicity characteristic leaching procedure and synthetic precipitation leaching procedure, EPA/SW/846/1311-1312
  31. USEPA, 1996, Citizens guide to soil washing, EPA/542/F62/002 and /018
  32. Wei, M., Liao, J., Liu, N., Zhang, D., Kang H., Yang, Y., Yang, Y., and Jin, J., 2007, Interaction between uranium and humic acid(I): Adsorption behaviors of U(VI) in soil humic acids, Nuclear Sci. Tech., 18(5), 287-293 https://doi.org/10.1016/S1001-8042(07)60063-3