블리킹을 이용한 대용량 초음파 볼륨 데이터 렌더링

Large-Scale Ultrasound Volume Rendering using Bricking

  • 김주환 (인하대학교 정보공학과 컴퓨터정보공학부) ;
  • 권구주 (인하대학교 정보공학과 컴퓨터정보공학부) ;
  • 신병석 (인하대학교 정보공학과 컴퓨터정보공학부)
  • 발행 : 2008.12.31

초록

최근 높은 해상도의 볼륨 데이터를 획득할 수 있게 되면서 제한된 용량의 메모리를 가진 그래픽 하드웨어에서 대용량 볼륨 데이터를 렌더링 하는 방법이 필요하게 되었다. 대용량 볼륨 데이터의 렌더링 방법 중 데이터를 적절히 분할하여 순차적으로 처리하는 블리킹 (bricking) 방법이 많이 사용된다. 그러나 일반적인 블리킹 방법은 직교 좌표계를 사용하는 CT와 MR 데이터를 위해 고안된 것으로, 원환체 (torus) 좌표계를 사용하는 부채꼴 형태의 초음파 볼륨 데이터에 적용하면, 관측광선이 블릭 (brick)의 곡면경계로 진입한 후 다시 빠져 나갈 때 동일한 블릭이 GPU메모리에 두번 적재되는 경우가 발생한다. 본 논문에서는 초음파 볼륨을 랜더링 할 때 반복적인 텍스쳐 스위칭이 발생하지 않도록 블릭의 크기를 결정하는 방법을 제안한다. 블릭의 경계는 곡면으로 되어 있으므로 이들의 곡률을 계산하여, 관측광선이 동일한 블록을 두 번 참조하는 영역을 찾는다. 이 영역에 해당하는 복셀들을 인접한 두 블릭들이 공유하도록 크기를 정하면 둘 중의 한 블릭에서만 재샘플링하게 함으로써 블릭이 중복 적재되는 것을 피할 수 있다.

Recent advances in medical imaging technologies have enabled the high-resolution data acquisition. Therefore visualization of such large data set on standard graphics hardware became a popular research theme. Among many visualization techniques, we focused on bricking method which divided the entire volume into smaller bricks and rendered them in order. Since it switches bet\W8n bricks on main memory and bricks on GPU memory on the fly, to achieve better performance, the number of these memory swapping conditions has to be minimized. And, because the original bricking algorithm was designed for regular volume data such as CT and MR, when applying the algorithm to ultrasound volume data which is based on the toroidal coordinate space, it revealed some performance degradation. In some areas near bricks' boundaries, an orthogonal viewing ray intersects the single brick twice, and it consequently makes a single brick memory to be uploaded onto GPU twice in a single frame. To avoid this redundancy, we divided the volume into bricks allowing overlapping between the bricks. In this paper, we suggest the formula to determine an appropriate size of these shared area between the bricks. Using our formula, we could minimize the memory bandwidth. and, at the same time, we could achieve better rendering performance.

키워드