지구 핵에 수산화물의 존재에 관한 연구

A Study of the Oxyhydroxide Presence at the Earth Core

  • 김영호 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 도재기 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 황길찬 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Kim, Young-Ho (Department of Earth and Environment Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Do, Jae-Ki (Department of Earth and Environment Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Hwang, Gil-Chan (Department of Earth and Environment Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 발행 : 2008.12.30

초록

외핵은 대부분 철로 이루어져 있으나 외핵의 밀도를 10% 정도 줄일 수 있는 희석 원소가 존재해야 한다. 외핵에서 존재할 가능성이 있는 가벼운 희석원소가 수소와 산소라는 가정 하에, 고압 하에서 수소의 열역학적 안정성을 적철석($Fe_2O_3$) + 수소($H_2$) $\to$ 괴타이트(FeOOH) + 철(Fe) 반응관계식을 이용하여 계산하였다. 열역학적 해석 결과, 상온 및 상압에서 이러한 화학반응의 깁스자유에너지는 12.62 kJ/mol로 계산되었다. 상온에서 압력이 증가함에 따라 깁스자유에너지 값은 감소하여 0.068 GPa에서 '0 kJ/mol'을 나타내었다. 압력이 증가함에 따라 깁스자유에너지 값은 일정한 비율로 점차적으로 감소하여 200 GPa에서는 -208.26 kJ/mol을 나타내었다. 이러한 열역학적 분석 결과로 볼 때 고압 하에서 수소와 철산화물이 반응하여 철원소와 철 수산화물을 생성하는 환원반응이 선호되며, 수소와 산소가 철수산화물의 형태로 원시지구 핵 내에 존재하게 되었을 가능성을 배제할 수 없다.

Earth outer core is composed of iron mainly with some diluent elements, which account for the observed ca. 10% density deficit compared to the pure iron. Among candidates as the light diluents, hydrogen and oxygen were selected, and the thermodynamic stability of the following reaction was calculated; hematite + hydrogen $\to$ goethite + iron. At ambient conditions, Gibb's free energy of this reaction is 12.62 kJ/mol. On increasing pressure at room temperature, it decreases to zero at 0.068 GPa. This energy decreases at constant rate down to 200 GPa, which shows -208.26 kJ/mol at that pressure. From these results, this chemical reaction prefers the reduction environment forming the iron element and iron oxyhydroxide, so possible presence of iron oxyhydroxide with iron at proto-core can not be ruled out.

키워드

참고문헌

  1. Ashcroft, N.W. (1990) Pairing instabilities in dense hydrogen. Phys. Rev., B41, 10963-10971
  2. Badding, J.V., Hemley, R.J., and Mao, H.K. (1991) High-pressure chemistry of hydrogen in metals: In-situ study of iron hydride. Science, 253, 421-424 https://doi.org/10.1126/science.253.5018.421
  3. Faure, G. (1991) Principles and applications of inorganic geochemistry, Macmillan Pub. Co., 626
  4. Fukai, Y. and Suzuki, T. (1986) Iron-water reaction under high pressure and its implication in the evolution of the Earth, J. Geophys. Res., 91, 9222-9230 https://doi.org/10.1029/JB091iB09p09222
  5. Giles, P.M., Longenbach, M.H., and Marder, A.R. (1971) High pressure ${\alpha}{\rightarrow}{\epsilon}$ martensitic transformation in iron, J. Appl. Phys., 42, 4290-4295 https://doi.org/10.1063/1.1659768
  6. Jeanloz, R. (1990) The nature of the Earth's core, Annu. Rev. Earth Planet. Sci., 18, 357-386 https://doi.org/10.1146/annurev.ea.18.050190.002041
  7. Jephcoat, A.P., Mao, H.K., and Bell, P.M. (1986) Static compression of iron to 78 GPa with rare gas solids pressure-transmitting media, J. Geophys. Res., 91, 4677-4684 https://doi.org/10.1029/JB091iB05p04677
  8. Kim, Y.H., Hwang, G.C., and Do, J.K. (2007) Compression study of goethite at room temperature, J. Miner. Soc., Korea, 20(4), 261-266
  9. Knittle, E. and Jeanloz, R. (1991) The high-pressure phase diagram of Fe0.94O: a possible constituent of the earth's core, J. Geophys. Res., 96, 16169-16180 https://doi.org/10.1029/90JB00653
  10. Mao, H.K., Jephcoat, A.P., Hemley, R.J., Finger, L.W., Zha C.S., Hazen, R.M., and Cox, D.E. (1988) Synchrotron x-ray diffraction measurements of single-crystal hydrogen to 26.5 GPa, Science, 239, 1131-1134 https://doi.org/10.1126/science.239.4844.1131
  11. Masters, T.G. and Shearer, P.M. (1990) Summary of seismological constraints on the structure of the Earth's core, J. Geophys. Res., 95, 21691-21695 https://doi.org/10.1029/JB095iB13p21691
  12. Michels, A., De Graaff, W., Wassenaar, T., Levett, J.M.H., and Lowerse, P. (1959) Compressibility isotherms of hydrogen and deuterium at temperatures between -175${\degrees}C$ and +150${\degrees}C$ (at densities up to 960 Amagat), Physica (Utrecht), 25, 25-42 https://doi.org/10.1016/S0031-8914(59)90713-X
  13. Mills, R.L., Liebenberg, D.H., Bronson, J.C., and Schmidt, L.C. (1977) Equation of state of fluid n-H2 from P-V-T and sound velocity measurements to 20 kbar, J. Chem. Phys., 66, 3076-3084 https://doi.org/10.1063/1.434324
  14. Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S., and Takafuji, N. (2002) Water in earth's lower mantle, Science, 295, 1885-1887 https://doi.org/10.1126/science.1065998
  15. Ohtani, E. and Ringwood, A.E. (1984) Composition of the core, I. Solubility of oxygen in molten iron at high temperatures, Earth and Planetary Science Letters, 71, 85-93 https://doi.org/10.1016/0012-821X(84)90054-2
  16. Ohtani, E., Ringwood, A.E., and Hibberson, W. (1984) Composition of the core, II. Effect of high pressure on solubility of FeO in molten iron, Earth and Planetary Science Letters, 71, 94-103 https://doi.org/10.1016/0012-821X(84)90055-4
  17. Ohtani, E., Hirao, N., Kondo, T., Ito, M., and Kikegawa, T. (2005) Iron-water reaction at high pressure and temperature, and hydrogen transport into the core, Phys. Chem. Minerals, 32, 77-82 https://doi.org/10.1007/s00269-004-0443-6
  18. Ruoff, A.L. and Vanderborgh, C.A. (1991) Hydrogen reduction of ruby at high pressure: Implication for claims of metallic hydrogen, Phys. Rev. Lett., 66, 754-757 https://doi.org/10.1103/PhysRevLett.66.754
  19. Saxena, S.K., Liermann, H.-P., and Shen, G. (2004) Formation of iron hydride and high-magnetite at high pressure and temperature, Phys. Earth & Planet. Int., 146, 313-317 https://doi.org/10.1016/j.pepi.2003.07.030
  20. Stevenson, D.J. (1981) Models of the Earth's core, Science, 214, 611-619 https://doi.org/10.1126/science.214.4521.611
  21. Takahashi, T., Bassett, W.A., and Mao, H.K. (1968) Isothermal compress-ion of the alloys of iron up to 300 kbar at room temperature: iron-nickel alloys, J. Geophys. Res., 73, 4717-4725 https://doi.org/10.1029/JB073i014p04717
  22. Wilburn, D.R. and Bassett, W.A. (1978) Hydrostatic compression of iron and related compounds: an overview, Am. Mineral., 63, 591-596