Mineralogical Characteristics of Stellerite associated with the Yucheon Granite, Cheongdo, Korea

경북 청도군 유천화강암 내 제올라이트 광물군 스텔러라이트의 산출과 광물학적 특징

  • Choo, Chang-Oh (Ecological River Environmental Technology Institute) ;
  • Lee, Jin-Kook (Ecological River Environmental Technology Institute) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 추창오 (하천환경종합기술연구소) ;
  • 이진국 (하천환경종합기술연구소) ;
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Published : 2008.12.30

Abstract

Because stellerite, belonging to the zeolite group, is much less common mineral than any other minerals in Korea, little mineralogical study has been done so far. Stellerite occurs on open surfaces of fractured zones in the Yucheon Granite associated with flowery tourmaline, Chongdo, Gyeongsangbuk-do. Stellerite with $3{\sim}4\;mm$ length and $1{\sim}2\;mm$ width is characterized by an equigranular and euhedral form. Flat and elongated columnar crystals show well developed (010) face. Stellerite shows an intensive alteration process, possibly due to weathering or devitrification, as evidenced by microtextural analysis of Scanning Electron Microscope (SEM). Water loss occurs at $161^{\circ}C$ while dehydroxylation occurs at $467^{\circ}C$ causing decomposition of the structure afterward. From its textural observation, it is concluded that stellerite formed rapidly at small undercooling, precipitated from residual melt during the late stage with relatively constant chemistry.

스텔러라이트(stellerite)는 제올라이트 광물군에 속하는데 국내에서 이 광물의 산출은 매우 적으며 이에 관한 광물학적인 연구는 전무한 상황이다. 경북 청도군 유천화강암에서 산출하는 스텔러라이트는 길이 $3{\sim}4\;mm$, 폭 $1{\sim}2\;mm$의 등립질, 자형이 특징이며 약간 납작한 주상형태가 가장 흔하다. 결정의 집합체는 무작위방향이나 방사상으로 밀집하는 조직이 특징적이다. 스텔러라이트 결정은 c축을 따라 발달하는데 010면이 가장 넓고 길게 발달한다. 주사전자현미경(SEM)에 의한 미세조직관찰 결과에 따르면 스텔러라이트는 풍화작용이나 탈유리질화와 같은 변질작용을 겪었다. 스텔러라이트는 $161^{\circ}C$에서 가장 큰 탈수반응이 일어나고, $467^{\circ}C$에서의 탈수산기작용이 일어나며 그 이후에는 구조가 파괴된다. 스텔러라이트는 과냉각이 작은 환경에서 비교적 짧은 기간 동안에 잔류용액의 조성비가 비교적 일정하게 유지되는 환경에서 형성되었다.

Keywords

References

  1. 한국동력자원연구소 (1988) 유천도폭 지질보고서. 60p
  2. Arletti, R., Mazzucato, E., and Vezzalini, G. (2006) Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite, Am. Miner., 91, 628-634 https://doi.org/10.2138/am.2006.1966
  3. Barth-Wirsching, U. and Holler, H. (1989) Experimental studies on zeolite formation conditions. European Jour. Miner., 1, 489-506 https://doi.org/10.1127/ejm/1/4/0489
  4. Beqiraj, E., Muller, F., Touray, J.C., and Jozja, N. (2006) Zeolites of Munella (Albania)-A stilbite-stellerite solid solution. Acta Mineralogica-Petrographica, Abstract Series 5, Szeged. p.13
  5. Beqiraj, E., Gjoka, F., Muller, F., and Baillif, P. (2008) Use of zeolite material from Munella region (Albania) as fertilizer in the sandy soils of Divjaka region (Albania). Carph. Jour. Ear. Environ. Sci., 3, 33-47
  6. Coombs, D.S., Ellis, A.J., Fyfe, W.S., and Taylor, A.M. (1959) The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochim. Cosmochim. Acta 17, 53-107 https://doi.org/10.1016/0016-7037(59)90079-1
  7. Dyer, A., Wilson, O.M., and Enamy, H. (1993) Stellerite from Todhead Point, Grampian region, Scotland Miner. Mag., 57, 540-542 https://doi.org/10.1180/minmag.1993.057.388.17
  8. Fleischer, M. (1968) New mineral names. Am. Miner., 53, 507-511
  9. Fridriksson, T., Nueuhoff, P.S., Arnorsson, S., and Bird, D.K. (2001) Geological constraints on the thermodynamic properties of the stilbite-stellerite solid solution in low-grade metabasalts. Geochim. Cosmochim. Acta, 65, 3993-4008 https://doi.org/10.1016/S0016-7037(01)00629-9
  10. Giret, A., Verdier, O., and Nativel, P. (1992) The zeolitisation model of Kerguelen Islands, southern Indian Ocean. In: Yoshida, Y. et al. (eds.), Recent Progress in Antarctic Science, 457-463
  11. Ghobarkar, H., Schaf, O., and Guth, U. (1999) The morphology of hydrothermally synthesized stilbite type zeolites. Jour. Solid State Chem., 142, 451-454 https://doi.org/10.1006/jssc.1998.8065
  12. Hong, Y.K. (1985) Geochemistry of the Cretaceous Enyang and Yoocheon granites in the southeastern Korea. Jour. Geol. Soc. Korea, 21, 90-108
  13. Lofgren, G. (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. Am. Jour. Sci., 274, 243-273 https://doi.org/10.2475/ajs.274.3.243
  14. Mozgawa, W., Stiarz, M., and Rokita, M. (1999) Spectroscopic studies of different aluminosilicates structures. Jour. Mol. Struct., 512, 251-257 https://doi.org/10.1016/S0022-2860(99)00165-9
  15. Murata, K.J. and Whitely, K.R. (1973) Zeolites in the Miocene Brions sandstone and related formations the Central Coast Ranges, California. Jour. Res., USGS, 1, 255-265
  16. Passaglia, E. and Sheppard, R.A. (2001) The Crystal Chemistry of Zeolites. In: Bish, D. L. and Mine, D. W. (eds.), Natural Zeolites: Occurrence, Properties, Applications, Reviews in Mineralogy and Geochemistry, Vol. 45, Miner. Soc. America, 69-116
  17. Pe-Piper, G. (2000) Mode of occurrence, chemical variation and genesis of mordenite and associated zeolites from the mordern area, Nova Scotia, Canada. Can. Miner., 38, 1215-1232 https://doi.org/10.2113/gscanmin.38.5.1215
  18. Pe-Piper, G. and Miller, L. (2002) Zeolite minerals from the north shore of the Minas basin, Nova Scotia. Atlantic Geol. 38, 11-28
  19. Wheeler, E.P. (1927) Stellerite from Juneau, Alaska. Am. Miner., 12, 360-364