PICmicro controller 1SS {8t RTOS HE &

=2 2008-5-20
PICmicro controller 255 $1% RTOS &4 I+

Implementation of a Real Time OS
for the Education of PICmicro Controller

Zt

o|d, 2%

Ao

Young-Dae Lee, Chanwoo Moon

2 o AFA, 2R 59 HokollA AAE LIAAY AHgol 71kl Qltk PICmicro?] vho|A2AEE Y= AFY
oA go] AREI Qe mhelaRAEZRRA, o] AELd YAt EFAARIONE FAstH= A7t &
WA ol gleut dF AFLAME Haso] AFoR RTOSY HA7F o3 F97t ek o] dtelA=
WEA Aoz 2|aivh AghE PICI6F87x Alj=o] tis) RTOSS 7158 F@T,

Abstract The purpose of the project was intended to show an application method of RTOS to PICmicro with
limited resources with several tasks controlling the peripheral devices. The application runs on the designed
PIC16F87x evaluation board with a bootloader burned so the application program can be easily downloaded
using the serial communication without using the ROM writer. Thus, it would also be a good example to use
for instructional or tutorial purposes for PICmicro education. The demo shows a useful examples who wish to
use the real time operation system in their own projects.

Key Words : PICmicro, operating system, bootloader

|. Introduction commercial vendors of such operating systems'. They

switch tasks in response to interrupts that make a

Micro-controllers are highly integrated computer higher priority task ready to run (or, rather, ready to

systems on a single low cost commodity chip resume). These general style OS switches the context

containing a processor, program memory, RAM, for each task, and the stack space of each task must be

discrete 1/O, A/D converters, serial ports, and other large enough to accommodate the context switching,

function supports. They offer great potential for savings of return addresses and local variables, plus a
reducing the cost and increasing the performance of car little bit for interrupt service routines.

control, robot control and etc. Real time system and However, we cannot apply the above approach to
embedded controller are closely related even for the simple microcomputers such as PICmicro with limited
simplest micro controller systems. resources. PICmicro’s micro controllers are widely

The preemptive style RTOS is commonly used with used in industry, and PICmicro has several product
large embedded systems projects, and there are many families, PIC10, PIC12, PIC14, PICI6, and PICIS?
PICI8 family is relatively high performance micro

BRI, Agoieta g R Aletnt controller with sufficient resources, and some
A3g, Fudstn A7) AR RAIA A
H2=Q17} 2008.8.23, 2= 2008.9.11

researches that implement an open source code RTOS

- 167 -

2008 10€ BEAHULSSUTVES =2X| M8 M55

have been reported™. [3] and [4] are implemented
based on the OSEK/VDX standard®”. On the other
hand, lower families have less resource, and it is hard
to port a RTOS.

The purpose of this paper is to present a small sized
RTOS to a PlCmicro controller that has lmited
resources with only a few hundred bytes of RAM and
a few kilo bytes of FLASH ROM such as PICI6F87x
which are commonly used for the microprocessor
education In many universities and companies. A
bootloader helps to download the program into a micro
controller from a PC through a serial port if it is
pre-burned on the ROM space. The PIC16F87x have
the on—board FLASH memory which can implement a
bootloader. Using a bootloader, no burner is needed to
reprogram the PICmicro, and it is not needed to remove
it from the circuit.

This work reports a way to design of a demo board
a RTOS based
programming for PIC16F87x micro controller the aid of
a bootloader for the easy and efficient PICmicro
education purpose.

to implement of application

iII, A RTOS for PICmiro

1. Structure of a typical RTOS, OSEK case™

OSEK/VDX is an industry standard of RTOS for
vehicles electronics, and has following features.

Task management : Two different types of task are
provided, basic task and extended task. A basic task is
a sequential code which can not be blocked by service
call. On the other hand, an extended task has waiting
state. Figure 1 shows the possible task status.

Scheduling policy : All tasks has a fixed priority,
and the scheduling policy can be one of full non
preemptive, full preemptive or mixed preemptive.

Conformance classes @ The conformance classes
define versions of the real-time executive, and they are
defined by the type of task, the possibility of recording
multiple activation request for a basic task, and the

number of tasks per priority level.

release activate

Fig. 1. Possible task states

Task synchronization : Only the owner task can
explicitly wait for the occurrence of one or more of its
events. The setting of occurrences can be made by
tasks or ISRs

Resources management : The concurrent assess to
shared resources is managed by OSEK-PCP, and the
resource sharing is allowed between tasks and ISRs or
between ISRs.

Alarms and counters : A counter counts ticks of a
source, and an alarm links a counter and a task. OS
allows the management of periodic tasks and watchdog
timers for the monitoring of various situations.

Communication Communication is based on
message objects. Two types of message objects are

provided, unqueued message and queued message.

2. Structure of the newly implemented RTOS

In our RTOS for the PICmicro, the hard real time
task of interrupt level has the priority, and the other
soft real time tasks are performed in a cooperative way
without priorities. The cooperative and soft real time
tasks is executed using round robin scheduler which is
implemented by the 1ms timer interrupt. After the OS
is initialized, the tasks are created, and they start or
stop. Except the idle state that there is no task, the real
time tasks(hard and soft) processes events.

The waiting OS can suspend the calling task for the
specified time. The current task that will be set ready

- 168 -

PICmicro controller XSS & RTOS Mg A3

to run by interrupt or another task, and it can be made
not ready state to running state, and its state can be
determinated.

The message is generated in a task and it can be
delivered to other task, and can be get from another
task. A task acquires a semaphore or suspends until it
is available. Also it releases a semaphore, if another
task is waiting for the semaphore it becomes ready to
run. The critical identification
processing routine is also implemented which are
needed for such as EEPROM read/writing tasks.

Since the hard real time task requires an accuracy,
the time amount should be minimized so it does not
affect the other soft real time tasks. If a hard real time
task needs a long time, then an event based method or
the conversion to soft real time tasks are desirable. The
priority between the soft real time tasks does not exist
and the task switching occurs when a task requests an

section and its

operating system service. Therefore, it is needed to
insure that the task requests are made often enough to
insure that the system realtime response requirements
are met. Figure 2 shows flow of a typical user
program. After imtialization of special function
registers and global variables, tasks and events are
created. After that, the scheduler switches the tasks
with round robin rules. Figure 3 is a typical timing
chart of tasks execution time. Supposed that tasks
ABCD and E was created. Each task is executed
sequentially with round robin scheduling. When task C
is being executed, an interrupt happens, which has a
higher priority, and task C is suspended.

Initialize SFR
!
Initialize
Global variables

|
|

i
Create Tasks |
|

!

Initialize Events

| Initialize RTOS

Loop and
Schedulm

Fig. 2. Typical user program flow

Fig. 3. A timing chart of tasks scheduling

After interrupt service routine is completed, task C
is resumed. Task D is a short task which is less than
one tick, and after task D is completed, next task E
becomes running state by scheduler. In this case, Mean
Latency Time of a task is calculated as equation 17,

MLT—

Z T, n

ni=1

Where n is number of tasks, and T is the execution
time.

lll, Implementation

1. Bootloader

All PICmicro programmers work the same way
(except the bootloader), they generate a serial data
stream using two signal lines, clock and data. Other pin
controls the programming voltage (at MCLR), and two
other pins supply power and ground. Another program
running on the PC (the programming software) takes
the hex file generated from the compiler translating it
into a serial data stream. This is routed to a
programmer through the correct interface (Serial,
Parallel or USB).
PICmicro programming products.

Figure 4 shows a commercial

A bootloader is a program which stays in the micro
controller and communicates with the PC usually
through the serial UART interface. The bootloader
receives a user program from the PC and writes it into
the flash memory, then launches this program in
execution.

- 169 -

2008 108 BIRQUEULESEMNTVEE =2 XBA M55

Fig. 4. Commercial PICmicro programming product
examples using USB(left) and parallel
port(right)

Start

User User
Main Program Main Program

Empty Space

Empty Space

Without a baotigader
user code is in colored
region

With a bootioader
in colored region

Fig. 5. Operation of a bootloader for launching
the program

Using a bootloader on the PIC, and a bootloader
utility on the PC, the PICmicro can be reprogrammed
in seconds over a serial link. Figure 5 shows the
operations of a bootloader for launching a program.

2. Implementation of OS

For the main board design, we used PICIGF876A(it
is compatible with PIC16F876 processor) with 20Mhz
clock. Since RTOS can run in a micro controller with
128bytes data memory ram, PICI6F87x series have
sufficient ram to implement it. From the table.1 which
lists PIC16F87x series, PICI6F876/77 micro controllers
are recommendable since they have 368bytes data ram
and double flash memory which is larger comparing
with PIC16F873/874 to store the program(application
program + RTOS + bootloader).

Figure 6 shows the circuitries of the main board,
power and RSZ32, respectively. We burmed a recent
bootloader into the chip which have small 255 byte
instructions. The PICI6F87x serial hootloader has
many variants and have been used successfully by

thousands of users of worldwide.

Table 1. Comparison of PIC16F87x series

PICI6F | PICI6F | PICI6F | PIC16F8

Heshites 83 | s | 8% | ™
Operation Speed .
(MAX) 20MHz | 20MHz | 20MHz | 20MHz
FLASH Program
Memory 4K 4K 8K 8K
(14-hit word)

Data Memoary (bytes) 192 192 368 368

EEPROM Data Memory| 128 128 256 256
Interrupts 13 14 13 14
Port Port
1O Ports ;f,g}:: ABC, E};ﬁc ABC
¢ DE ! DE
Timer 3 3 3 3
Capture/Compare
/PWM 2 2 2 2
Serial MSSP, | MSSP, | MSSP, | MSSP,
Communications USART |USART |USART | USART
Parallel : B
Communications psp PP
10bit A/D module 5 8 5 8

- Bum the bootloader code in flash memory

— Check the application and OS size not to overwrite
the bootloader area of flash memory in advance.

- Connect the PIC circuit to the PC via a serial link.
and run the bootloader code from the PC and
download your code to the circuit in seconds.

Figure 7 shows the parts of bootloader source
program, and figure 8 is a downloader examples in PC.
For the demo program, we tested the following tasks.

- Blink two LEDs alternatively at 1Hz rate

= Check a button on/off and display on another LED

- Check another button on/off and display on 7SEG
LED

- Display time on the specified position of terminal

- Measure voltage in a variable resister and display
the results on terminal

- 170 -

PICmicro controller IS2 ¢

ron

t RTOS Hg o7

Fig. 6. The designed circuitry of main board
part, power part and RS232 part,

respectively

HC1 7831 20313730899

i 39031 72000031 37608031 78F00203039
| 103E20008400031 37D0B0319282P6316031 70C142D.
{a03E

:103E4000840A2D0A0313FDOIFS03FI0ATI0A112F09

308031 78D00031 37008031 7DS5.

Fig. 7. Parts of source program source of a
bootloader and its hex file, respectively.

daar 108 . £

PIC Bootivade

Fig.8. Downloader examples in PC

The demonstration code was written to test the
designed PIC16F876A board as shown in Figure 9. In
order to clearly present the hardware actually used in
the demo, the below schematic of figure 10 shows the
part of the designed PICI6F876A demo board that are

needed for the demo to run.

Fig. 9. The designed PICmicro demo board

Fig. 10. Demo execution using the simulator

IV. Conclusion

A cooperative real-time operating system for micro
controllers can run in a small size micro controller with
a few hundreds of bytes RAM and kilo bytes of flash
ROM.

The project of this paper is to implement and
evaluate the performance of a cooperative RTOS in
PICmicro controllers which have limited resources.

A demo board was designed to implement a minimal
size bootloader which can download the executable
program of RTOS, and its application program through
a PC serial port using the bumed bootloader. The demo
code was written in C language using CCS-C compiler
with IDE(Integrated Development Environment) and
was successfully tested on the designed PICIGF876A
board.

- 171 -

20084 104

SrEQIHUMESSATYSE =2X] HM8H H5&

Reference

[1] J. Stankovic and R. Rajkumar. "Real-Time
Operating Systems”. The Journal of Real-Time
Systems, 28(2/3): pp. 237-253, 2004.

(2] YD. Lee et al,, "The recent PIC microcontroller
design”, C&C INst. Co. LTD,, the 1st ed,, 2008.

[3] Jean-Luc B’echennec, Mika'el Briday, S ebastien

Faucou and Yvon Trinquet, "An OpenSource
Implementation of the OSEK/VDX RTOS
Specification”

[4] Pragmatec, "Real time kemel for PICIS,
PICos18", 2006

[5] Website, www.osek-vdx.org

[6] K Zuberi et al. "EMERALDS-OSEK: A Small
Real-Time Operating System for Automotive
Control and Monitoring”, In Society of
Automotive Engineers Congress and Exposition,
1999,

(7] Francesco "Conversi, SISTEMA OPERATIVO
PicOs", 2005

o] ¢ H(FAEY)

<FRARR: YUltlE A2Y, 2uEs olFEA Y

Alo>

- 172 -

~2001Y A uista 47125
Fop3 v
R 06 WA ED T

49,89 A7
L2006 ~ @A) Fje

AR W

T 2HEA 28>

