Preparation and Characterization of Proton Conducting Crosslinked Membranes Based On Poly(vinyl chloride) Graft Copolymer

Poly(vinyl chloride) 가지형 공중합체를 이용한 수소이온 전도성 가교형 전해질막의 제조와 분석

  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Choi, Jin-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jung-Tae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김종학 (연세대학교 화공생명공학과) ;
  • 고종관 (연세대학교 화공생명공학과) ;
  • 최진규 (연세대학교 화공생명공학과) ;
  • 박정태 (연세대학교 화공생명공학과) ;
  • 고주환 (연세대학교 화공생명공학과)
  • Published : 2008.12.30

Abstract

A graft copolymer consisting of poly(vinyl chloride) (PVC) backbone and poly(hydroxyethyl acrylate) (PHEA) side chains was synthesized via atom transfer radical polymerization (ATRP). Direct initiation of the secondary chlorines of PVC facilitates grafting of hydrophilic PHEA monomer. This graft copolymer, i.e. PVC-g-PHEA was cross-linked with sulfosuccinic acid (SA) via the esterification reaction between -OH of the graft copolymer and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased to 0.87meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.025 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Poly(vinyl chloride) (PVC) 주사슬과 poly(hydroxyethyl acrylate) (PHEA) 곁사슬로 구성된 가지형 공중합체를 원자전달라디칼 중합을 통해 합성하였다. PVC의 2차 염소원자의 직접적인 개시반응에 의해 친수성인 PHEA 단량체를 그래프팅시켰다. 이렇게 합성된 PVC-g-PHEA을 술포석시닉산(SA)를 사용하여 가교시켰으며, 이는 가지형 공중합체의 -OH 그룹과 SA의 -COOH와의 에스테르 반응임을 FT-IR 분광법을 이용하여 분석하였다. 이온교환능(IEC)은 SA 함량이 증가함에 따라 계속하여 증가하여 0.87 meq/g까지 도달하였고, 이는 전해질막에 이온 그룹수가 증가하기 때문이다. 하지만, 함수 율은 SA 함량이 20 wt%까지는 증가하다 그 이상에서는 감소하였다. 또한 수소 이온 전도도도 SA 함량에 따라 증가하여 20 wt% SA 농도에서 0.025 S/cm의 최대값을 나타내었고, 이는 SA 함량이 증가함에 따라 이온 그룹의 수가 증가하는 효과와 가교가 증가하는 효과가 서로 경쟁적으로 일어나기 때문으로 사료된다.

Keywords

References

  1. P. E. Trapa, B. Huang, Y.-Y. Won, D. R. Sadoway, and A. M. Mayes, Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film Lithium Batteries, Electrochem. Solid-State Letters, 5, A85 (2002) https://doi.org/10.1149/1.1461996
  2. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, "Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles", Chem. Commun., 14, 1662 (2004)
  3. S. W. Kuo, C. H. Wu, and F. C. Chang, "Thermal Properties, Interactions, Morphologies, and Conductivity Behavior in Blends of Poly(vinylpyridine)s and Zinc Perchlorate", Macromolecules, 37, 192 (2004) https://doi.org/10.1021/ma035655+
  4. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, "Role of Polymer Matrix in Polymer/Silver Complexes for Structure, Interactions, and Facilitated Olefin Transport", Macromolecules, 36, 6183 (2003) https://doi.org/10.1021/ma034314t
  5. J.-H. Choi, P.-H. Kang, Y.-M. Lim, J.-Y. Sohn, J.-H. Shin, C.-H. Jung, J.-P. Jeun, and Y.-C. Nho, "Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell", Korean Membrane J., 9, 52 (2007)
  6. L. Depre, M. Ingram, C. Poinsignon, and M. Popall, "Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices", Electrochim. Acta, 45, 1377 (2000) https://doi.org/10.1016/S0013-4686(99)00346-1
  7. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)", J. Membr. Sci., 233, 93 (2004) https://doi.org/10.1016/j.memsci.2004.01.004
  8. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, "Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell", Membrane Journal, 16, 241 (2006)
  9. D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, "Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups", Membrane Journal, 16, 16 (2006)
  10. S.-L. Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, "Photo-Cross-Linking of Sulfonated Styrene-Ethylene-Butylene Copolymer Membranes for Fuel Cells", Ind. Eng. Chem. Res., 44, 7701 (2005) https://doi.org/10.1021/ie050015b
  11. J. R. Varcoe, R. C. T. Slade, E. L. H. Yee, S. D. Poynton, D. J. Driscoll, and D. C. Apperley, "Poly-(ethylene-co-tetrafluoroethylene)-Derived Radiation-Grafted Anion-Exchange Membrane with Properties Specifically Tailored for Application in Metal-Cation-Free Alkaline Polymer Electrolyte Fuel Cells.", Chem. Mater., 19, 2686 (2007) https://doi.org/10.1021/cm062407u
  12. Z. Li, J. Ding, G. P. Robertson, and M. D. Guiver, "A Novel Bisphenol Monomer with Grafting Capability and the Resulting Poly(arylene ether sulfone)s", Macromolecules, 39, 6990 (2006) https://doi.org/10.1021/ma061054h
  13. C. Manea and M. Mulder, "Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications", J. Membr. Sci., 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  14. J. H. Choi, C. K. Yeom, J. M. Lee, and D. S. Suh, "Nanofiltration of Electrolytes with Charged Composite Membranes", Membrane Journal, 13, 29 (2003)
  15. C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., 120, 1 (1996) https://doi.org/10.1016/0376-7388(96)00155-X
  16. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, "Preparation and Characterization of Proton Conducting Crosslinked Diblock Copolymer Membranes", J. Appl. Polym. Sci., 107, 819 (2008) https://doi.org/10.1002/app.27122
  17. Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, "Proton Conducting Poly(vinylidene fluoride-co-chlorotrifluoroethylene) Graft Copolymer Electrolyte Membranes", J. Membr. Sci., 313, 315 (2008) https://doi.org/10.1016/j.memsci.2008.01.015
  18. Z. Wang, H. Ni, C. Zhao, X. Li, T. Fu, and H. Na, "Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications", J. Polym. Sci. B: Polym. Phys., 44, 1967 (2006) https://doi.org/10.1002/polb.20841
  19. T. Z. Fu, C. J. Zhao, S. L. Zhong, G. Zhang, K. Shao, H. Q. Zhang, J. Wang, and H. Na, "SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages", J. Power Sources, 165, 708 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.023
  20. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and characterization of heteropolyacid ($H_3PW_{12}O_{40}$)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., 212, 263 (2003) https://doi.org/10.1016/S0376-7388(02)00507-0
  21. J. K. Choi, D. K. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, "Composite Polymer Electrolyte Membranes Comprising Triblock Copolymer and Heteropolyacid for Fuel Cell Applications", J. Polym. Sci. B. Polym. Phys., 46, 691 (2008) https://doi.org/10.1002/polb.21390
  22. J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, "Nanocomposite Polymer Electrolytes Containing Silica Nanoparticles: Comparison between Poly(ethylene glycol) and Poly(ethylene oxide) dimethyl ether", J. Appl. Polym. Sci., 106, 4083 (2007) https://doi.org/10.1002/app.26951
  23. J. H. Kim, J. Won, and Y. S. Kang, "$\pi$-Complexes of Polystyrene with Silver Salts and Their Use as Facilitated Olefin Transport Membranes", J. Polym. Sci. B: Polym. Phys., 42, 2263 (2004) https://doi.org/10.1002/polb.20106
  24. J. H. Kim, B. R. Min, K. B. Lee, J. Won, and Y. S. Kang, "Coordination Structure of Various Ligands in Crosslinked PVA to Silver Ions for Facilitated Olefin Transport", Chem. Commun., 2732 (2002)
  25. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, "Preparation and characterization of crosslinked PVA/$SiO_2$ hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications", J. Membr. Sci., 240, 37 (2004) https://doi.org/10.1016/j.memsci.2004.04.010
  26. J.-W. Rhim, H. B. Park, C.-S. Lee, J.-H. Jun, D. S. Kim, and Y. M. Lee, "Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes", J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030