DOI QR코드

DOI QR Code

Irradiation Induced Defects in a Si-doped GaN Single Crystal by Neutron Irradiation

  • Park, Il-Woo (Department of Science Education, Seoul National University of Education)
  • Published : 2008.12.20

Abstract

The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing electron magnetic resonance(EMR), Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of $2{\times}10^{17}$ neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, $A_1$(TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much broader or was much more broadened than that for the unirradiated one. The observed EMR center with the g value of 1.952 in a neutron irradiated Si-doped GaN may be assigned to a Si-related complex donor.

Keywords

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Koyaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 73, 832 (1998). https://doi.org/10.1063/1.122016
  2. M. Linde, S. J. Uftring, G. D. Watkins, V. Harle, and F. Scolz, Phys. Rev. B55, R10177 (1997).
  3. D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997). https://doi.org/10.1103/PhysRevLett.79.2273
  4. S. A. Goodman, F. D. Auret, F. K. Koschnick, J.-M. Spaeth, B. Beaumont, and P. Gilbart, Mat. Sci. Eng. B71, 100 (2000).
  5. M. H. Zaldivar, P. Femandez, and J. Piqueras, J. Appl. Phys. 85, 1120 (1999). https://doi.org/10.1063/1.369254
  6. V. V. Emstev, V. Y. Davydov, I. N. Goncharuk, E. V. Kalinina, V. V. Kozlovskii, D. S. Poloskin, A. V. Sakharov, N. M. Schmidt, A. N. Smirmov, and A. S. Usikov, Mat. Sci. Forum 2, 1143 (1997).
  7. A. Castaldini, A. Cavallini, and L. Polenta, J. Phys.: Condens. Matter 12, 10161 (2000). https://doi.org/10.1088/0953-8984/12/49/315
  8. J. H. Kim, I.-W. Park, S. H. Choh, S. S. Park, B. G. Kim, and Y. H. Kang, physica status solidi(c) 0, 597 (2003).
  9. S. S. Park, I.-W. Park, and S. H. Choh, J. Jpn. Appl. Phys. 39, L1141 (2000). https://doi.org/10.1143/JJAP.39.L1141
  10. I.-W. Park, H. Choi, H. J. Kim, H. W. Shin, S. S. Park, and S. H. Choh, Phys. Rev. B 65, 195210 (2002). https://doi.org/10.1103/PhysRevB.65.195210
  11. E. K. Koh, I.-W. Park, H. Choi, M. Yoon, S. H. Choh, H. S. Kim, Y. M. Cho, S. Kim, and S. S. Park, J. Crystal Growth 276, 37 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.156
  12. E. R. Glaser, W. E. Carlos, G. C. B. Braga, J. A. Freitas, W. J. Moore, B. V. Shanabrook, A. E. Wickenden, D. D. Koleske, R. L. Henry, M. W. Bayerl, M. S. Brandt, H. Obloh, P. Kozodoy, S. P. DenBaars, U. K. Mishra, S. Nakamura, E. Haus, J. S. Speck, J. E. Van Nostrand, M. A. Sanchez, E. Calleja, A. J. Ptak, T. H. Myers, and R. J. Molnar, Mater. Sci. Eng. B 93, 39 (2002). https://doi.org/10.1016/S0921-5107(02)00007-7
  13. W. J. Moore, J. A. Freitas, Jr., G. C. B. Braga, R. J. Molnar, S. K. Lee, K. Y. Lee, and I. J. Song, Appl. Phys. Lett. 79, 2570 (2001). https://doi.org/10.1063/1.1411985
  14. W. E. Carlos, J. A. Freitas Jr., M. Asif Khan, D. T. Olson, and J. N. Kuznia, Phys. Rev. B 48, 17878 (1993). https://doi.org/10.1103/PhysRevB.48.17878