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Construction of Efficient and Secure Pairing Algorithm
and Its Application

Dooho Choi, Dongguk Han, and Howon Kim

Abstract: The randomized projective coordinate (RPC) method ap-
plied to a pairing computation algorithm is a good solution that
provides an efficient countermeasure against side channel attacks.
In this study, we investigate measures for increasing the efficiency
of the RPC-based countermeasures and construct a method that
provides an efficient RPC-based countermeasure against side chan-
nel attacks. We then apply our method to the well-known N pair-
ing algorithm over binary fields and obtain an RPC-based counter-
measure for the 77 pairing; our method is more efficient than the
RPC method applied to the original 7)7 pairing algorithm.

Index Terms: Differential power analysis (DPA), Eta pairing, ran-
domized projective coordinate (RPC), side channel attacks (SCAs),
Tate pairing,

I. INTRODUCTION

Pairings on elliptic curves are a well-known subject in the
field of cryptography. They have been applied to many cryp-
tographic schemes, such as identity-based encryption [1], [2],
identity-based signature [3]-[5], tripartite key agreement [6],
short signature [7], and identity-based authentication key agree-
ment [8]. Incidentally, pairings on elliptic curves were first in-
troduced as cryptanalytic tools in [9], [10].

Since the main difficulty in the efficient implementation of
pairing-based cryptographic schemes is the computation of then
pairing, many techniques have been developed for pairing com-
putation. Barreto ez al. [11] and Galbraith et al. [12] have pro-
vided techniques for efficient computations of the pairings by
eliminating the unnecessary computation steps from the origi-
nal Miller’s algorithm [13]. Duursma and Lee [14] have found a
closed formula of the Tate pairing over a field with a character-
istic value of three. Kwon [15] also provided a closed formula
over a field with a characteristic value of two. To shorten the
main loop of the Tate pairing computation, Barreto ef al. [16]
have defined the Eta pairing on some supersingular curves. Hess
et al. [17] extended this in a more generic manner to the Ate
pairing on non-supersingular elliptic curves.

Side channel attacks (SCAs) commonly utilize a relation be-
tween side-channel information related to secret data and in-
ternal values during cryptographic operations [18], [19]. There
has been some progress in the research on SCAs on pairing-
computation algorithms in the works of Page and Vercauteren
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[20], Whelan and Scott [21], and Kim ef al. [22]. In [22], Kim
et al. have investigated the security of the 77 pairing over binary
fields in the context of SCAs.

A number of countermeasures have already been developed
to protect pairing algorithms against SCAs [20]-{23]. In [20],
the bilinearity of pairing is utilized to hide the secret informa-
tion. Scott {23] has proposed a very simple concept in which the
Miller variable m in the BKLS algorithm [11] is multiplied by a
random element that will be eliminated in the final exponentia-
tion. In [21], it is remarked that the random value must be mul-
tiplied not only by the Miller variable, but also by all interme-
diate values that comprise the Miller variable in order to obtain
an efficient countermeasure. In [22], Kim ez al. have directly ap-
plied the randomized projective coordinate (RPC) method to the
original nr pairing algorithm developed by Barreto et al. [16],
and have shown that their countermeasure is the most efficient
among all the existing countermeasures.

In this paper, for a given extension field equation, we first
perform a measurement to estimate the computation cost of an
extension field equation to which the RPC method has been ap-
plied. Then, we propose a method for constructing an efficient
and secure pairing algorithm from a given pairing algorithm. To
demonstrate the application of our method, we present an effi-
cient RPC-based countermeasure of the #r pairing over a binary
field, which reduces the additional computation cost by 17% as
compared to Kim ef al.’s countermeasure in [22].

This paper is organized as follows. Section II briefly intro-
duces the definitions of the Tate and n7 pairings. Section III de-
scribes the SCAs and its countermeasures on pairing algorithms.
Section IV describes a measurement to estimate the efficiencies
of RPC-based countermeasures and proposes a method for the
development of an efficient countermeasure against a differen-
tial power analysis (DPA) attack; in Section V, we apply our
construction method to the well-known 7y pairing algorithm
over binary fields. The last section presents the conclusions of
this study.

II. PAIRINGS ON ELLIPTIC CURVES

Let F be an elliptic curve over a finite field [F;; [ be a posi-
tive integer coprime to ¢, which divides #E(F,); and k be the
smallest positive integer such that I|(¢* — 1) (this is termed the
embedding degree). The Tate pairing of order [ is defined as fol-
lows:

72 E(F)[l] x E(Fge)l] — pu by
(P,Q) — fl’P(DQ)(qk~1)/l

where f; p is a rational function such that its principal divisor
(f1,p) is equivalent to I(P) — (IP) — (I — 1)(O), Dy, is a zero
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divisor equivalent to (Q) — (O) such that D, has disjoint sup-
port with (f; p), and g is the group of the /th roots of unity in
F*,. The Tate pairing can be essentially computed by using the
following Miller’s formula [11], [13];

Lappp(Dg)

Jare,p(Dq) = fa,P(DQ)fb’P(DQ)U( +5yP(Dg)

where £, pp is a line through points P and bP (it is a tangent
line at aP if a = b), and v(41p)p is a vertical line at the point
(a+b)P.

Barreto ef al. [11] showed that 7,(P,Q) = f, p(Q)@"~D/!
since {|#E(F,) and k is the embedding degree. They also
proved that for some supersingular curves with embedding de-
gree k = 2,4, 6 the vertical line evaluation part v, 4)p(Q) can
be omitted in Miller’s algorithm by using a distortion map
from E(Fy) to E(F ). Their modified Tate pairing is as fol-
lows:

710 E(F )] x E(F)[] — i by (P,Q) — 1 (P, ¢(Q)).

It can be directly computed that fN,p(w(Q))(qk_l)/ N =
fl,p(¢(Q))(qk_1)/l, where N = hl for some integer h; this
computation was first performed by Galbraith er al. [12]. Du-
ursma and Lee [14] and Kwon [15] derived the closed formu-
las of the Tate pairing for characteristic values of three and
two, respectively. Their formulas were deduced by comput-
ing fw, p(¢(Q))(qk_1)/ N therefore, they developed efficient
Tate pairing algorithms using these formulas. For the case of
a characteristic value of two (resp. three), Kwon [15] (resp. Du-
ursma and Lee [14]) used the equation N = 22™ 4 1 (resp.
N =3 41).

To shorten the main loop of the pairing algorithm, Barreto et
al. [16] defined the n7 pairing for some supersingular curves as
follows:

nr(Py(Q)) = fr.p(p (@)W

where T = ¢ mod I, W = (¢* — 1)/N, N is an integer such
that I|N,N|g* — 1, and T®* — 1 = LN for some a, L, and
[ 1 L. The bilinearity and non-degeneracy of the 7 pairing can
be confirmed by the following property (see [16], [17] for more
details):

7(P,(Q)F = nr (P (@) T .

Hess et al. [17] extended it in a more generic manner to the Ate
pairing on non-supersingular elliptic curves.

HI. SIDE CHANNEL ATTACKS

SCAs commonly utilize a relation between the side-channel
information related to secret data and internal values during
cryptographic operations [18], [19]. An attacker utilizes side-
channel information such as computation timing, power con-
sumption, and electromagnetic radiation for confirming the ac-
curacy of his or her guess about the secret information. The aim
of the attack is to guess the secret value (or some related infor-
mation) stored at the target device. If an attacker is allowed to
observe the side-channel information a few times and is able to

directly interpret them, it is termed simple power analysis (SPA).
If the attacker can analyze the side-channel information several
times using a statistical tool, the process is termed DPA. The
standard DPA utilizes a correlation function that can determine
whether a specific bit is related to the observed calculation. In
particular, if the information about the time taken to execute
cryptographic algorithms is utilized, the attack is termed a tim-
ing attack (TA). Although SCAs and countermeasures are be-
coming increasingly well understood, the current emphasis in
terms of asymmetric key schemes is mainly on RSA, ECC, and
XTR [24].

Recently, new primitives such as pairing algorithms have in-
vestigated. First, Page, and Vercauteren proposed fault and
SCAs against the Duursma-Lee algorithm [20]. Very recently,
Whelan and Scott investigated practical pairing algorithms such
as the Tate, Eta, and Ate pairing using correlation power anal-
ysis (CPA) [21], and Kim et al. investigated the security of the
7 pairing over binary fields in the context of SCAs [22].

A number of countermeasures have been developed to protect
pairing algorithms against SCAs [20]-{23]. In [20], the bilinear-
ity of pairing is utilized to hide the secret information. A pairing
is calculated as 7;(P, Q) = 7(aP,bQ)"/**, where a and b are
random values, or as 7;(P, Q) = 7;(P,Q + R)/7(P, R), where
R is a random point. Note that although the first equation has
an additional factor ab in the exponent, it can be eliminated by
the careful selection of a and b such that ab = 1 (mod 1). Scott
proposed a very simple concept in which the Miller variable m
in the BKLS algorithm [11] is multiplied by a random element
that will be eliminated in the final exponentiation [23]. In [21],
it is remarked that the random value must not only be multiplied
by the Miller variable, but also be multiplied by all intermedi-
ate values that comprise the Miller variable in order to obtain
an efficient countermeasure. Kim et al. introduced efficient and
secure algorithms of the 7 pairing using RPC systems for com-
puting the pairing [22].

IV. CONSTRUCTION OF EFFICIENT
COUNTERMEASURE OF PAIRING ALGORITHM
AGAINST DPA ATTACKS

A. Motivation

In [22], Kim et al. proposed the RPC method as protection
against a DPA attack on the 77 pairing over the binary field
and proved that their method is the fastest method among the
existing countermeasures by estimating the computation cost of
all proposed methods [20], [23]. Therefore, the RPC method
can be a good starting point for the construction of an efficient
and secure pairing algorithm. In the RPC-based countermeasure
of the pairing algorithm against a DPA attack, since the inputs
of the pairing algorithm are two points P = («,3) and @ =
(x,y) on the elliptic curve, there are three possible methods to
randomize a given pairing algorithm:

o The point P is randomized as a projective coordinate

(@,B,7) = (30, 78,7), where 7 € F;.

e The point () is randomized as a projective coordinate

(%,7,2) = (2, 2y, Z), where Z € T},
 Both the points P and () are randomized simultaneously.
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We do not consider the third method because it yields an in-

efficient algorithm. In order to develop an efficient RPC-based

countermeasure against the DPA attack, the following two prob-

lems need to be resolved:

o Among the above two RPC methods, the method that yields
more efficient RPC-based countermeasure must be selected.

 More extensively, a modification of the original pairing algo-
rithm must be found to reduce the computational cost of the

RPC-based countermeasure.

The drastic increase in the computation cost is mainly caused
by the modification of the equation over the extension field in
the main loop of the pairing algorithm. Therefore, the equation
over the extension field needs to be examined in detail. In the
next section, we carefully investigate a special equation over the
extension field for four inputs in the base field.

B. RPC Method on Balanced Forms

Suppose that f(«, 8;z,y) is a polynomial over a finite field
I, for two variable pairs (a, 3) and (z,y), and f(, g) denotes
the same polynomial rearranged as an («, (3)-variable polyno-
mial. Similarly, f, ) denotes f(«,3;,y) rearranged as an
(x,y)-variable polynomial.

Definition 1: f, g) is called a balanced form over F,, if it is
represented as follows:

1

Fap) = Y (halm,y)a™ + gi(z,9)5%) + colz,y) (1)
i=n
such that
e ep>ep_1 > >e €QN\{0}and
o fori =1,---,n, hi(x,y) and g;(x,y) are not zeros simulta-
neously.

Furthermore, if f(, ) and f(, ,y are both balanced forms, then
flo, B;2,y) is said to be a balanced form.

In Definition 1, h;(x,y) and g;(z,y) are called coefficient
polynomials, n and e,, are called an index and degree of fia,p)
respectively, and each h;(z, y)a® or g;(, y) 3% is called a term
of f(a,3). Note that the index and degree are regarded as zero in
the case of f(, ) = 0 or 1. More explicitly, the index of f(, s
is defined as follows:

Definition 2: Suppose that f(«, 3;2,y) is a balanced form
and f(, gy is represented as shown in (1). Then,

o the index of f(, g is defined as n — 1 if the constant term
co(,y) is zero or one, and n otherwise.
o Theindex of f(, g) is defined as the index of f(/aﬁ) if fa,p) =

(fla, 5))el, for some integer €/, where f(’a’ 5) is also a balanced

Definition 3: For a given balanced form f{
(v, B)-RPC applied form f(a

1
S (haw, y)a® + gil, y)8) + 7 colw, y).

i=n

a, B;x,y), an
, ;) is defined as follows:

Similarly, we can define the notion of an (x,y)-RPC applied
form f(z,y; z). From the definitions of the RPC applied form
and the index, we can directly obtain the following lemma.
Lemma 1: Let f(o,3;z,y) be a balanced form. Suppose
that I and e are the index and degree of f(a,3)» TESPECtively,
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and f(a, B;) is an («, 3)-RPC applied form. If o, 3, v, z, and
y are regarded as elements in F, then I field multiplications are

additionally required for the computation of f (o, B;7), com-
pared to the case of f(, 3y when the computations of v*s are
ignored.

Suppose that an extension field F . over F, is represented
by a polynomial basis {1,¢,---,t*"1}. Now, let us consider a
polynomial basis F’ on the extension field F« such that

F=fotfit+ fot>+ -+ fot" ! )

where f;(o, 8;x,y) is a balanced form over F, for each ¢ =
0,---,k — 1. Then, F is called a balanced form over the exten-
sion field F .. Let I, 5) and I;(, ) be the indices of f;, g)
and f;, . foreachi =0, -+ k—1, respectively, and let e;,, g
be the degree of f;(, gy fori =0,---,k — 1. For convenience,
we present several definitions and notations as follows:

o Fio p) (tesp. F, ) denotes a reananged equation of F' with

fl (a,3) (TESP. fl(m y)) fori =0,---,k— 1.

. Z Ii(a, gy (resp. Z ILi(3,y)) is called an (o, B) (resp. (z,y))-

total index of F, and itis denoted by I(, g (resp. Lz )

e max{e;(q,4)i = 0, -+, k — 1} is called an (o, 3)- -maximum
degree of F, and it is denoted by €(a,5). In a similar manner,
we define an (z,y)-maximum degree of F, e, .

o D(q,p) denotes the number of elements of {e;(, 5[0 #
€i(a,8) 7 €(a,3) fori =0,---,k — 1}, and the notation of
D, has a similar meaning with respect to x, .

o Ca,p) (tesp. C(z ) denotes the number of field multiplica-
tions for efficiently computing f;(o g,’s (resp. fi(, ,y’s) for
i=0,--,k—1.

Definition 4: An (o, 3)-RPC applied form of F, ), de-
noted by F(% 8)» is defined as follows:

k—1

S et o g

=0

Flap) :

Similarly, an (x,y)-RPC applied form of Fi, ,y, which is de-
noted by F(I’y), is defined in the same way.

From Lemma I, we can prove the following theorem for cal-
culating the computation cost of the RPC applied form of F.

Theorem 1: Let F' be a balanced form over [F» as shown in
(2), and F(aﬁ) be the (a, 3)-RPC applied form. Suppose that
foreachi # j € {0,k — 1}, fi(4 g) and fj(a,,@) have no
identical terms. If a, 3, v, x, and y are regarded as the elements
in 7, then for computing F(a,ﬂ), the required number of field
multiplications is as follows:

Iiap) + Diapy + Clap)

when the field multiplications for computing v*s are ignored.
Proof: By Lemma 1, additional I;, g) field multiplica-
tions are required for computing fz («v, B;7y) compared to fia,)
for each i = 0,---,k — 1, and the number of w*fi(a,ﬁ;fy)’s
is exactly equal to D4 gy. Therefore I(, gy + Diq,p) addi-
tional field multiplications are required for the computation of
Fla,p) since fi(, 5) and f]-(a f) have no identical terms for each
i # j €10,k — 1}. Hence, the proof is completed. O
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C. Construction of Efficient RPC-Based Countermeasure

Suppose that F' is an equation over the extension field in the
main loop of a pairing computation algorithm over a given finite
field. Let P = (a, ) and Q = (z,y) be the input points of the
pairing algorithm.

Lemma 2: Assume that F' is a balanced form over the ex-
tension field. Then, the («, 3) (resp. (z,y))-RPC applied form
of F'is an equation over the extension field in the main loop of
an RPC-based countermeasure randomizing P = (a, /3) (resp.
Q= (IE, Y))-

Proof: The proof is essentially based on the idea in [11],
[25]. Since (v, () is randomized as («, 3,7) « (v, v3,7) for
v € 7, we apply o « % and 3 g on F'. Subsequently, F is
modified by Wﬁﬁ(a’ﬁ)' However, (Aye(+’ﬁ))‘1_1 = 1 and the
final exponent of the pairing has (g — 1) as its factor. Therefore,
76«+’5) can be ignored in the computation of the pairing. O

Lemma 2 and Theorem 1 directly give us the following corol-
lary on the efficiency of the RPC based countermeasure of the
pairing algorithm.

Corollary 1: Let P = («,3) and @ = (z,y) be the input
points of the pairing algorithm and F' be an equation in its the
main loop. Suppose that F is a balanced form over the extension
field as shown in (2), and fi(o“ 3) and f; (@.8) have no identical
terms for each ¢ # j € {0,---,k — 1}. Then,

Iia,8) + Dia,p) + Cla,p)

field multiplications are required for computing F(a,ﬁ) when
field multiplications for computing y*s are ignored.

Let F' be a balanced form that is the extension field equa-
tion in the main loop of a given pairing algorithm. Then, from
Corollary 1, I4 ) + D(a,5) + C(a,8) is @ good tool to mea-
sure the efficiency of the RPC based countermeasure of the al-
gorithm since the main computation cost of the pairing algo-
rithm is caused by the field multiplications for computing F'.
If we select one randomizing point between two input points
P = (a,0) and Q = (=,y), say P, then I(, gy and D(, g
values are fixed; however, there might be a chance to reduce
Cl(a,) because we can modify the coefficient polynomials of
fi(a,p) foreach i = 0,---,k — 1. Hence, we can propose the
following method for constructing an efficient and secure pair-
ing algorithm from a given pairing algorithm;:

Construction of an efficient countermeasure against DPA
Step 1.

Determine which method is more efficient be-
tween the RPC methods using the points P and
Q, respectively, by investigating the (_,_)-total in-
dex, D(_y value, and C(_ y value of the F in the
main loop of the algorithm by Corollary 1.

Step 2.  Assume that the method using the point P is se-
lected in the first step. Then, modify each fita,8)
fori =0,---,k — 1 to reduce the value C(, gy if
possible.

Step 3. Apply RPC method randomizing the point P on

this modified algorithm

In the above construction, if we obtain a new modified pairing
algorithm from the given pairing algorithm in steps 1 and 2, the
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modified algorithm can be called an RPC-friendly pairing algo-
rithm, because the modified algorithm yields an efficient RPC-
based countermeasure against DPA attacks. The practical appli-
cation and examples of our construction method are examined
in the next section.

V. APPLICATION TO EXISTING PAIRING
ALGORITHMS

A. Efficiency of RPC Methods Randomizing Two Input Points
Respectively

In this section, we give two examples of the efficiency of
RPC-based countermeasures. First, we apply the RPC method
to the np pairing algorithm [16] on supersingular curves with
characteristic two; second, we apply the RPC method to the Tate
pairing algorithm [14] with characteristic three.

Algorithm 1 describes Barreto ef al.’s i pairing algorithm
over binary fields [16] (for details of the closed formula, see
Appendix).

Algorithm 1 7 pairing algorithm on the curve Ej, : Y2 +Y =

X? + X + bover Fam where b € {0,1} and m odd [1].

Input: P = (o, 3) and Q = (z,y).

Output: 77 (P,¥(Q)).
w oo oD
f—w@+a+l)+y+(B+b+eumqry2) +H(wtz)s+t
fori=0to(m—1)/2do
w<—o¢+(m2—+1),a<—\/_,ﬁ<—\/ﬁ

g — wlatz+ ) 4y (B+(1- T D)ot em-1)/2)+
(w+z)s+t

f<17g

if 7 < (m —1)/2 then

x—axy—1y?

end if

end for

2m __ m _ o(m+1)/2
return fW _ f(2 1)(2™+1—e€2 )

The term ¢; in steps 2 and 5 of Algorithm 1 is defined as follows
(it is also defined in (9) of the Appendix):

0,
€ = 1

In [22], Kim et al. randomized the input point () after a com-
parison of efficiencies between RPC based countermeasures us-
ing input points P and (), respectively. Now, we can easily ex-
amine the efficiency of the RPC methods randomizing P and
Q, respectively, by investigating I, gy + D(qa,8) + C(a,s) and
I(z’y) + D(ac,y) + C(z’y) of Corollary 1.

The extension field F in step 5 of Algorithm 1 can be accu-
rately described as follows:

F :=fo+ fis+t, where
fo=<a+(—”3fi)> <\/E+x+ M) +y+B

2 2
+1
+ (1— (mz )) V& + €(m—_1)/2 and
(m+1)

if 0,1 mod 4,
otherwise.

f1 =+ + . 3
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Example 1: From (3),
— 3/2 (m+1) 1/2 | al/2
Jo(a,8) =" + (m tomg— et (a +0 )

+ ((mgl) <x+ (m;1)> +y+€(m;1>/2),
fl(a,g)za-{-(:c—l—(m;l)),

fozy) = w(a, B)z +y + c(a, B), and

fi@y) =7+ w(a, B), where )
w(a, B) = <Oé + (m; 1)) and (5)
(o, B) = a®? + (m—;ﬁa—kalm + g2
+1
+ (m2 ) +€(m_1)/2. (6)

Then, the (v, 3) (resp. (z,y))-total index of F is 4 (resp. 2),
D(aﬁ) = land D¢, = 0. J1(a,p) and Jig (z,y) do noOt re-
quire any field multiplication. fo(a,3) needs two field multiplica-
tions (for computing o*/? = aa!/? and (x + W) a). Two
field multiplications are also required for fo, ,y (for comput-
ing w(a, B)x and o/2). Therefore, L3y + Diap) + Cla,py =
44+1+2= 7andI(w’y> +D($,y) +C($7y) =240+2=4.
Since base-field squaring is relatively inexpensive [26] and the
method in [27] for computing square roots is as fast as squaring,
the field multiplication cost is sufficient to compare the efficien-
cies of the two RPC methods. Hence, the RPC method using the
point @ is more efficient than the method using P.

Example 2: In Duursma-Lee’s Tate pairing algorithm over
fields using characteristic three [14], [15], the equation in the
main loop is as follows:

F:=fo— fic — fap—p°
where fo = —f3, f1 =8, fa=a®+2+b b=+l

for given input points P = («, §) and Q = (=, y). Then, the in-
dices of fo(a,ﬂ) and fg(a”@) (resp. fo(w’y) and fg(m’y)) are both 1
since fo = — f3. Therefore I(g,3) = 1+0+1+0 = I, ). Fur-
thermore, D(a B8 = 2= D(gc y) andC’ (0,8) = 2= C’(z ) Since
the constant term (z + b) (resp. (o® + b)) of fo(a,p) (resp.
f0($ y)) 1s repeated at fo (a,8) (TESP. fg (z,y))» We can reduce
the number of field multiplications by one for computing F\,, 3
(resp. Fiy ). Therefore, (I(o ) + D(a,g) + Clap)) —1 =5
(resp. (I(zy) + D(a,y) + Clzyy) — 1 = 5) field multiplica-
tions are required for computing F («,3) (TESD. F(m v))- Hence,
the RPC methods implemented by using the point P and () have
the same field multiplication cost when the cubing and the cubic
root computations are ignored. However, since the cubic root
computation is generally more expensive than the cubing com-
putation, we can conclude that the RPC method using the point
P is more efficient than the method using Q.

B. RPC-Friendly nr Pairing Algorithm over Binary Fields

In this section, we develop an RPC-friendly algorithm for the
77 pairing over binary fields using steps 1 and 2 of our construc-
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tion method.

« Since the RPC-method using the point Q = (x,y) is more
efficient than the method using the point P, as shown by Ex-
ample 1, we first rearrange (3) in the main loop of Algorithm 1
with the (z, y)-variable as observed in (4)—-(6).

« Second, we modify the coefficient polynomial c¢(c, 3) in (6)
as follows:
1 1
c(a, B) = (o® + oz)l/z + —(m; )a+ﬂ1/2 + h(m;— )
+ €(m—1)/2 Dy the Weierstrass equation of Ej,
m+1 m+1
+ €(m—1)/2
+1 +1
Z(ﬂa—)a + 0+ (m2 ) T o+ €m-1)/2
m+1
:( 5 )w(aaﬁ)+ﬂ+b+€(m—l)/2 (N
where w(a, §) is defined as in (5). Consequently, the modi-

fied polynomial (e, 3) does not require any field multiplica-
tion. Therefore, C'; . is reduced by one.
More explicitly (7) shows that

j , , m+1 _
Go—i pr (w(Q))m :wjm(J) + y(J) + (%wj + 6( )
b+ €m1y/2) + (w; +2)s + t

where w; = (al=7) + (mﬂ ) (for details of the notations, see
the Appendix).

Algorithm 2 RPC-friendly algorithm of 71 pairing on the curve
Ey:Y?24+Y = X3+ X + bover Fan where b € {0,1} and m
odd.

Imput: P = (o, ) and Q = (z,y).

Output: 17 (P, ¥(Q)).

1w e ad 2D

2 few@tatl)Fy+(B+b+cmynye)F(wtz)s+t
3 fori=0to(m—1)/2do

4 w—a+ (mH)

5: gwa+y+(<m+l)w+ﬂ+b—l—e(m 1y/2) H(w+z)s+t
6: f—fg

7. ifi < (m — 1)/2 then

8: a%ﬁ,ﬂ%ﬁ@%wz,y%f

9: endif

10: end for

2m _1y(9™M L] _2(mT1)/2
. return fW = f@7-1HET -2 )

—_
—

Our new RPC-friendly n pairing algorithm is shown in Al-
gorithm 2. Algorithm 2 reduces the computational cost by two
square root computations on the base field IF;, compared with
the Algorithm 1 (i.e., Barreto et al.’s algorithm). Therefore, the
reduction due to this modification is only a negligible amount
of the total computation cost of the nr pairing. That is, the
field multiplication costs of the Algorithms 1 and 2 are the
same. Nevertheless, from the viewpoint of the RPC-based coun-
termeasure, this small modification causes a significant differ-
ence.
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In Algorithm 2, the (z, y)-total index of the equation in the
main loop is 2, D,y = 0, and Cp, 4y = 1. Therefore,
Iz ) + D(z,y) + Cla,y) = 3 field multiplications are required
for computing the equation in the main loop of the RPC-based
countermeasure in Algorithm 2 by Corollary 1. However, four
field multiplications are required for computing the equation in
the main loop of the RPC method (i.e., Kim et al.’s algorithm
[22]) in the original Algorithm 1 (i.e., Barreto ef al.’s algorithm
[16]) (see Example 1).

Algorithm 3 describes the RPC based countermeasure ap-
plied to our RPC-friendly algorithm. The total field multiplica-
tion cost of Algorithm 3 is 6(m+1)M +5M since the total cost
of Kim et al. algorithm is 6.5(m + 1)M + 5M [22], where M
denotes one base field multiplication cost.

Since the total cost of Barreto ez al. algorithm and our RPC-
friendly algorithm is 3.5(m + 1)M + 1M [22], the additional
field muitiplication cost of Algorithm 3 (resp. Kim et al.’s al-
gorithm) is 2.5(m + 1)M + 4M (resp. 3(m + 1)M + 4M).
Consequently, our Algorithm 3 reduces the additional cost by
17% for m = 239, as compared with Kim et al.’s algorithm
[221.

Algorithm 3 Efficient and secure 7 pairing algorithm on the
curve By : Y2 +Y = X3 + X + b over Fom where b € {0,1}
and m odd.

Input: P = (o, 3) and Q = (z,y).

Output nr (P, %(Q))-

Choose z € F at random

T—Zx,y— zy

w— o+ w
few@+z(a+1)+7+28+b+egmyny/z) +
z)s+ 2t
fori=0to (m
+ (m;—l)

Eal i

(Zw+

5 —1)/2do
6 W«
7. g — wI+y+E( (m+1)w+6+b+e(m 1y/2)+(Zw+T)s+zt
8 f—fyg
9: ifi < (m—1)/2then

100 a—+a,B— /B, T« x5 7 32°

11: end if

12: end for
2m m m+1)/2
13: return fV = f@"-1DETH1-2mTVE)

VI. CONCLUSION

In this study, we have performed a measurement of the pair-
ing computing algorithm in order to estimate the efficiency of an
RPC-based countermeasure against SCAs. We have been able to
construct a method to yield an efficient countermeasure of the
pairing algorithm against SCAs. Using this method, we have
presented an RPC-friendly 7r pairing algorithm over binary
fields from the original Barreto er al.’s algorithm. The propo-
sed RPC-friendly ny pairing algorithm reduces the computation
cost by two square root computations and has only a slight ad-
vantage in efficiency. However, if we apply the RPC method to
this algorithm as protection against DPA attacks, then this coun-
termeasure reduces the additional computation cost by 17%,
compared with that in the case of application of the RPC method
[22] to Barreto et al.’s algorithm, which is the most efficient ex-

isting countermeasure. This implies that a small modification
of the original algorithm might have a significant effect on the
efficiency of DPA countermeasures.
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APPENDIX
A. Pairing Computation over Binary Fields

In this Appendix, we briefly review the closed formula of the
Tate and 7 pairing over binary fields in [15], [16]. We consider
the elliptic curves over binary fields F,, where ¢ = 2™ and m is
odd, as follows:

Ey:Y?>+Y = X*+ X +bwhere b € {0,1}.

Then, E; has the embedding degree k = 4 [15], [16], [28] and

#Ey(F,) = 2™+ 1 +€2"5, where
=1, if(m=1,7(mod8) andb = 1) or
€= (m =3,5 (mod 8) and b = 0),

1, otherwise.

In the elliptic curve Ej, the extension field IF 4 is represented by
the basis {1, s, ¢, st} suchthat s2 4+ s4+1 = 0and 2+t +s = 0.
The distortion map is given by ¢(z,y) = (z + %,y + zs + t).
Furthermore, in this setting, Barreto et al. [16] proved that the
T value of the nr pairing is 2(m+1)/2 4 ¢

It can be directly induced that for a given P = (

(az(?i) ’ /852l) )
o' (x,y), ¢(z,y) =

a? ﬂ)’
2P =

where (z;,y;) = (x+1,y+z+1).

In the above equation, a¥) (resp. 3)) is defined as o) = o2’
(resp. BY) = %' (for further details, see [15], [16]). Then,

¢'(z,y) = (z +14,y + iz + ¢;), where (8)
0, if0,1 mod 4,
“= { 1, otherwise. ©)

In [15], Kwon derived a closed formula of the Tate pairing,
and Barreto et al. [16] independently found a closed formula of
the nr pairing on the elliptic curve Fj. The following theorem
is a summary of these results.

Theorem 2 ([15], [16]) For given P = («
Ey (Fq)’

o The Tate pairing 7,( P, %(Q)) =

.0),Q = (x,y) in

22m__q
22m—i

m—1
H 92:p(¥(Q))
i=0

where gr(X,Y) is an equation of the tangent line at R.
+ The 77 pairing 7 (P, ¢(Q)) =

(m—1)/2 W

9210 (W(Q)Y | €(Q))

=0

where P/ = 2(m=1/2p_¢(XY) is the equation of a line
passing through 2™+1/2P and P, and W = ¢* — 1/N =
(22" —1)(2™ + 1 — 2™ FV/2) N = #E,(F,).
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Furthermore,

g2 p(0(Q) =™ ™ + (@ + 1) +y + 87 +p

+ (@2 L1 o)+t (10)

From (8) and (10), it can be directly proved [15] that

22m71

=) 4 1)z(-9 4 4D

4 (@D 1 gE+D 4

+ (@Y 1) 4 200y 41
Barreto et al. [16] computed that

92:p(V(Q))

i s . m—+1 .
Gos pr ($Q)2 =, (=) 4 £ 4 %) Ly
4B 41— WT*U)Q<—1~J‘>

+ €tm—1)/2 + (w; + zW))s + t,
=(a+(m-1)/2)(a+z+1)+y

+ (B + b+ €myr)/2)

+{(a+(m—-1)/2)+z)s+1
-3 4 (mT'H))

((Q))

where w; = (af
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