
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 312
Copyright ⓒ 2008 KSII

This work was supported by the Korea Research Foundation Grant funded by the Korean government (MOEHRD,
Basic Research Promotion Fund) (KRF-2008-314-D00412).
This is the full version of the extended abstract which appeared in: Proceedings of ICCS 2006 (May 28-31, Reading,
UK) J. Dongarra Ed. Springer-Verlag, LNCS 3991, pages 977-980.

DOI: 10.3837/tiis.2008.06.003

Practical Password-Authenticated
Three-Party Key Exchange

Jeong Ok Kwon, Ik Rae Jeong, and Dong Hoon Lee

Graduate School of Information Management & Security, Korea University
136-701, Anam-dong Seongbuk-gu, Seoul, Republic of Korea

[e-mail: pitapat@korea.ac.kr, irjeong@korea.ac.kr, donghlee@korea.ac.kr]
*Corresponding authors: Ik Rae Jeong and Dong Hoon Lee

Received November 2, 2008; revised December 10, 2008; accepted December 11, 2008;

published December 25, 2008

Abstract

Password-based authentication key exchange (PAKE) protocols in the literature typically
assume a password that is shared between a client and a server. PAKE has been applied in
various environments, especially in the “client-server” applications of remotely accessed
systems, such as e-banking. With the rapid developments in modern communication
environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct
a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In
such a peer-to-peer channel, it would be much more common for users to not share a password
with others. In this paper, we consider password-based authentication key exchange in the
three-party setting, where two users do not share a password between themselves but only with
one server. The users make a session-key by using their different passwords with the help of
the server. We propose an efficient password-based authentication key exchange protocol with
different passwords that achieves forward secrecy in the standard model. The protocol requires
parties to only memorize human-memorable passwords; all other information that is necessary
to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only
three rounds and four modular exponentiations per user. In fact, this amount of computation
and the number of rounds are comparable to the most efficient password-based authentication
key exchange protocol in the random-oracle model. The dispensation of random oracles in the
protocol does not require the security of any expensive signature schemes or zero-knowlegde
proofs.

Keywords: Cryptography, provably security, key exchange, three-party setting, dictionary
attacks, undetectable dictionary attacks

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 313

1. Introduction

To communicate securely over an insecure public network, it is essential that secret
session-keys are exchanged securely. The shared secret key may be subsequently used to
achieve some cryptographic goals, such as confidentiality or data integrity. In key-exchange
protocols that are based on either public-keys or symmetric-keys, a party has to keep long
random secret keys. However, it is difficult for a human to memorize a long random string;
thus, a party uses an additional storage device to keep the random string. On the other hand,
password-based authenticated key exchange (PAKE) protocols allow two or more specified
parties to share a secret key by using only a human-memorable password. Hence, PAKE
protocols do not require that each party hold some devices such as smart cards or hardware
tokens. From this point of view, PAKE provides convenience and mobility. PAKE can be used
in several environments, especially in networks where a security infrastructure like PKI
(public-key infrastructure) is not deployed. PAKE has also received significant attention in
mobile networks where mobile devices have relatively small computing power.

The design of secure and efficient PAKE protocols for two parties has been extensively
pursued in the last few years. Most of the protocols assume that the two users have a common,
pre-shared password. However, this assumption is hard to satisfy in some applications. It
would be more plausible to assume that a user wants to communicate securely with another
user with the two different passwords. In such a case, a two-pary PAKE protocol is hard to
implement since the number of passwords that a user has to memorize linearly increases with
the number of possible partners. PAKE with different passwords in the three-party setting
surmounts all the above problems. In this setting, each user shares a password only with a
trusted server. The trusted server authenticates two users and helps the users with different
passwords share a common session-key. It thus requires each user to only remember a single
password with the trusted server. Consequently, three-party PAKE protocols can limit the
number of passwords that each user must memorize. However, the server has to participate in
the protocol run to help two users share a session-key.

In relation to other security models, the most distinguishable characteristic of the PAKE
security model is that the model must incorporate protection from dictionary attacks.
Dictionary attacks are possible because of the low entropy of the password space. In practice,
a password consists of either four or eight characters, such as a natural language phrase, to be
easily memorized. The set of these probable passwords is small. As a consequence, the
dictionary of passwords is relatively small. Usually, dictionary attacks are classified into two
classes: online and offline. In online dictionary attacks, an adversary attempts to use a guessed
password by participating in a key-exchange protocol. If the protocol run fails, the adversary
initiates a new protocol run by using another guessed password. These online attacks require
the participation of the server.

In offline dictionary attacks, an adversary selects a password from a dictionary and verifies
his guess in an offline manner, i.e., the adversary uses only recorded transcripts from a
successful run of the protocol. So, these offline attacks are undetectable. Even if there exists
only a bit of redundant information in the protocol messages, an adversary will perform an
offline dictionary attack by using the redundancy as a verifier for checking whether or not a
guessed password is correct. We also have to consider offline dictionary attacks by inside
malicious users.

Online dictionary attacks are always possible but cannot become a serious threat if they can

314 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

be easily detected and thwarted by counting access failures. In the server-aided PAKE
protocols, we more carefully consider online dictionary attacks because a malicious insider
may indiscernibly launch such attacks by using the server as a password-verification oracle. If
a failed guess cannot be detected and logged by the server, the attacks are called undetectable
online dictionary attacks [1]. If undetectable online dictionary attacks succeed on a PAKE
protocol, an adversary is able to find the correct passwords of users and hence is able to access
everything that is permitted for honest users – which compromises the overall security of the
key-exchange protocol. To prevent undetectable online attacks, a server-aided PAKE protocol
must provide a method by which the server can distinguish an honest run of the protocol from
a malicious one. The main security goal of PAKE schemes is to restrict adversaries so that they
attempt only detectable online dictionary attacks. If a PAKE scheme is secure, an adversary
cannot obtain any advantage in guessing passwords and the session-keys of users through
offline dictionary attacks and undetectable online dictionary attacks.

One of the most basic security requirements of a key-exchange protocol is key secrecy,
which guarantees that no computationally-bounded adversary can learn anything about the
session-keys that are shared between honest users by eavesdropping or sending messages of its
choice to the users in the protocol. It is necessary that key secrecy also be preserved with
regard to the server, which behaves honestly but in a curious manner. That is, the server should
not learn anything about the session-keys of the users by eavesdropping. This is true even if
the server helps two users establish a session-key between them.

2. Our Work in Relation to Prior Works
PAKE with different passwords in the three-party setting has been extensively studied in the
last few years [2][3][4][5][6][7][8]. However, some of those schemes are not secure [2][7]. In
[4], a protocol, C2C-PAKE, has been proposed without a formal proof. C2C-PAKE uses a
block cipher to authenticate the protocol messages. In this method, a password is used as the
encryption key of the block cipher. It is conjectured to be secure when the block cipher is
instantiated via an “ideal cipher”.

In [5], a formal model of security and a generic construction, GPAKE, of three-party PAKE
with different passwords, have been proposed by Abdalla et al. GPAKE consists of three
phases. In the first phase, a session-key is generated between the server and each of the two
users by the use of a provably-secure, two-party PAKE in the standard model. In the second
phase, a message authentication code (MAC) key is distributed by the server to each user by
the use of a three-party key-distribution protocol. In the final phase, both users execute an
authenticated, Diffie-Hellman key-exchange protocol by using the MAC key that is obtained
in the previous phase. The security of GPAKE has been proved in the standard model (without
a formal proof of forward secrecy). However, a concrete instantiation from GPAKE is not
optimized from the viewpoint of the round-/computational complexities because the
sub-protocols are treated as black boxes. For example, even the most efficient instantiation
from GPAKE still requires six rounds and more than 17 modular exponentiations per user in
the standard model.

To improve the efficiency of the generic protocol, GPAKE, Abdalla et al. present a
tailor-made protocol AP in [6]. However, they fail to improve the security of GPAKE since
AP uses a full-domain hash function for message authentication, which is instantiated via an
“ideal hash” function. The security of AP without forward secrecy has been proved in the ideal
hash model under non-standard variants of the decisional Diffie-Hellman (DDH) assumption.
A secure scheme in the ideal cipher/hash model may not be secure in the real world, if an

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 315

idealized function is instantiated with a real function [9][10][11][12][13]. From this point of
view, it is more desirable to design provably secure and efficient three-party PAKE protocols
in the standard model, which is the goal of this paper.

Recently, in [8], Chung et al. show that the simple three-party password-based authenticated
key exchange protocol using ideal hash functions, S-3PAKE [7], is not secure to an
impersonation-of-initiator attack, an impersonation-of-responder attack, and a
man-in-the-middle attack. They demonstrate its weaknesses by using informal description and
formal description, respectively. To fix the three weaknesses, they suggest a countermeasure
in [8].

Our Construction. For a small device that communicates over a mobile network, it is
especially important to establish a session-key with a small amount of computation and
communication and a small number of rounds. The extent of the communicational/
computational burden that is required by GPAKE may restrict the use of the PAKE protocol in
mobile networks. In light of the complexities that concern communications/computations and
rounds, we propose LPAKE, which is a light-weight, PAKE protocol with different passwords.
LPAKE archives forward secrecy and security from known-key attacks in the standard model.
In fact, LPAKE seems to be the first, provably-secure, three-party PAKE protocol in the
standard model that satisfies the efficiency conditions. The light-weightiness of LPAKE is
caused by no use of any expensive signature schemes or zero-knowledge proofs.

In Table 1, we compare the efficiency and security of our protocol with the protocols that
have been proven to be secure. The efficiency of an instantiation from GPAKE depends on the
two-party PAKE protocol that is used and on the three-party key-distribution protocol. For a
concrete instantiation of GPAKE, as presented in [5], we use the two-party PAKE protocol of
[14] and the three-party key-distribution scheme of [15]. In fact, the inefficiency of the
instantiation of GPAKE arises from the inefficiency of the underlying two-party PAKE
protocol. There exist provably-secure, two-party PAKE protocols in the standard model, such
as the protocols in [16][14][17]. However, all the existing two-party PAKE protocols in the
standard model are not light enough for small mobile devices. The AP protocol outperforms
LPAKE if we consider only efficiency aspects. However, LPAKE achieves the requirements
of security and efficiency at the same time.

Table 1. Comparison of provably-secure PAKE protocols with different passwords

Scheme/
Resource

Round Modular exp. Security † Assumption † †
User Server

GPAKE [2] 6 ≥ 17 ≥ 17 KK, KSS, UDOD DDH, CCS-E, CMS-M,
EFS-S

AP [4] 2 2 2 KK, KSS s-DDH, Ideal Hash
LPAKE (our scheme) 3 4 6 FS, KK, KSS, UDOD DDH, CMS-M, PRF

† An FS-secure protocol is a key-exchange protocol that provides forward secrecy. A KK-secure
protocol is a protocol that is secure from known-key attacks. A KSS-secure protocol is a protocol that
maintains key secrecy with regard to the curious server. A UDOD-secure protocol is a protocol that is
secure from undetectable online dictionary attacks.
† † s-DDH denotes a stronger variant of the DDH problem. CCS-E denotes a chosen-ciphertext-secure
encryption. CMS-M denotes a MAC scheme that is secure from chosen message attacks. EFS-S denotes
a signature scheme that is secure from existential forgery. PRF denotes a secure pseudorandom
function.

In Section 3, we define security models that are based on the existing security model for

316 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

PAKE with different passwords in the three-party setting. In Section 4, we present our
light-weight protocol, LPAKE. In Section 5, we present a proof of the security of the proposed
protocol. In Section 6, we provide an efficiency anlaysis. We conclude in Section 7 with a
summary of our contribution.

3. Security Model
The security model defined in this section is based on Abdalla et al.’s model for three-party
PAKE in [5], which follows the model that is established by Bellare et al. [18] that has been
extensively used to analyze key-exchange protocols. The security of our protocol is proved in
this model.

Participants. We fix nonempty sets of potential users and potential servers; these are denoted
by U and S, respectively. We assume that U contains two users and S contains a single server.
We consider a PAKE protocol with different passwords in which two users in U want to
exchange a session-key. The server, S∈S, helps the users with different passwords by which
they share a common session-key. A participant, P , which is either a user or a server, may
have many instances of the protocol. An instance of P is represented by an oracle sP for any
s∈ .

Passwords. Each user iU ∈U holds a password ipw that is obtained at the start of the
protocol through a password-generation algorithm, PG (1)k , which upon the input of a security
parameter, 1k , outputs a password ipw that is uniformly distributed in a password-space
Password of size, PW . We consider a symmetric model where the server, S , holds

[]
iS i Upw pw ∈= U for each user, iU .

Partnered. Our definition of “partnered” follows that of [18], which uses a notion of a session
identifier. Let the s-th instance of iU be s

iU . A session identifier of s
iU , s

isid , is used to
uniquely name the sessions and is defined as the concatenation of the protocol messages in the
lexicographic order with respect to their owners. In this paper, we assume that the parties can
simultaneously transmit messages. That is, we assume a duplex channel. We also assume that
the users can be ordered by their names (e.g., lexicographically) and write i jU U< to denote
this ordering.

A partner identifier of s
iU , s

ipid , is an identity of the user with whom s
iU intends to

establish a session-key, s
iU

sk . The oracles, s
iU and t

jU , are partnered if: (1) s t
i jsid sid= ; (2)

s
i jpid U= ; and (3) t

j ipid U= .

Game. There are three types of adversary: outside attackers; the curious server; and malicious
users. An outside attacker tries to break the secrecy of the session-keys. The curious server [5]
behaves honestly but tries to learn information about session-keys that are shared between
honest users. A malicious user deviates from the protocol to perform an offline dictionary
attack against the other user.

Queries for Outside Attackers. Let A be an adversary. A controls all the communications

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 317

and queries the oracles. The queries that A can ask are as follows.

 (,)sSend P M : This query sends a message, M , to an oracle, sP , and gets a response from

sP . Using this query, A can conduct active attacks, such as modifying or inserting
protocol-messages. The adversary can initiate a key-exchange protocol in the parties, U,
and S , by asking the 0 (,)Send SU query. In response to 0 (,)Send SU , each user, iU ∈U ,
and the server, S , send the first message of the protocol.

 (, ,)s t u
i jExecute U S U : This query models passive attacks. In these attacks, the adversary

procures the instances of honest executions of the protocol by the two users, s
iU and u

jU ,

and the server, tS . (Although the actions of the Execute query can be simulated via
repeated Send oracle queries, this particular query is needed to distinguish between
passive and active attacks in the definition of forward secrecy.)

 Re ()s
iveal U : This query models the adversary’s ability to obtain session-keys, i.e., it

models known-key attacks in the real system. If a session-key, s
iU

sk , has previously been

constructed by s
iU , it is returned to the adversary. A PAKE protocol is said to be secure

from known-key attacks if the compromise of multiple session-keys for sessions (other
than the session for which secrecy must be guaranteed) does not affect the key secrecy of
the protocol. This notion of security means that session-keys are computationally
independent from each other. Security from known-key attacks also implies that an
adversary cannot successfully perform offline dictionary attacks on the passwords from the
compromised session-keys that are successfully established between honest parties.

 ()Corrupt P : This models the exposure of the long-term key that is held by P . That is, it
models forward secrecy, which means that even with the long-term keys of the parties, no
adversary can learn any information about previous session-keys that are successfully
established between honest users without any interruption. The adversary is assumed to be
able to obtain long-term keys of parties but cannot directly control the behavior of these
players (of course, once the adversary has asked a query, ()Corrupt P , the adversary may
impersonate P in subsequent Send queries.) We stipulate that on ()Corrupt P , the
adversary can get only the long-term key but cannot obtain any internal data of P .

 ()s
iTest U : This query is used to define the advantage of an adversary. It is allowed only

once by an adversary A , and only to fresh oracles. A fresh oracle is defined below for
describing the freshness for outside attackers. If the intended partner of s

iU is part of the
malicious set, the invalid symbol, ⊥ , is returned. Otherwise, a coin, b , is flipped. If b =1,
the session-key, s

iU
sk , which is held by s

iU , is returned. If b =0, a string that is randomly

drawn from a session-key distribution is returned.

Freshness for Outside Attackers. For a Test query, we define the notion of freshness that
considers forward secrecy. We say an oracle, s

iU , is fresh if the following conditions hold.
(1) s

iU has computed a session-key, s
iU

sk ≠NULL, and neither s
iU nor t

jU has been asked

the Reveal query, if s
iU and t

jU are partnered.

(2) No ()jCorrupt U query has been asked by the adversary before any (,)s
iSend U ∗ queries,

318 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

where s
i jpid U= .

Now, we assume that A is an outside attacker. A asks the oracles the above queries and

receives the responses. At some point during the game, a Test query is asked of a fresh oracle
(for the outside attackers) and the adversary may continue to submit other queries. Finally, the
adversary outputs 'b to guess the bit, b, which is used in the Test oracle, and terminates. We
define CG to be an event such that A correctly guesses the bit, b. The advantage of the
adversary, A, must be measured in terms of the security parameter, k, and is defined
as , () 2Pr[] 1outAtt

P AAdv k = −CG . The advantage function is defined as (,)outAtt
PAdv k t =

,max{ ()}outAtt
P AA

Adv k where A is any adversary with a time-complexity, t, which is a polynomial

in k.

Definition 1. We say a protocol P is secure from outside attackers, if the following two
properties are satisfied.

- Validity: If all oracles in a session are partnered, the session-keys of all oracles are the
same.

- Key secrecy: ()outAtt
PAdv k is bounded by ()seq k

PW
ε+ , where ()kε is a negligible function,

seq is the number of Send queries, and PW is the size of the password space.

Queries for the Curious Server. We define an auxiliary query that is allowed to the curious
server to capture the security condition, i.e., the server should not learn anything about the
session-keys of the users, even if the server helps two users establish a session-key between
themselves. In defining the query, we notice that a server knows the passwords for all users
and behaves honestly but in a curious manner. For this reason, the curious server, A, is allowed
to ask multiple queries of the Execute and (,)s

iSend U M oracles but not of the
(,) tSend S M and Reveal oracles, since these oracles can be easily simulated through the

passwords. To emulate the server’s advantage in learning information about a session-key that
is shared between honest users, we define the additional oracle, TestPair, as follows.

 (,)s u

i jTestPair U U : This query is allowed only once by the server, and only when both

oracles, s
iU and u

jU , are fresh, which is defined below as the freshness for the curious

server. If the user-instances, s
iU and u

jU , do not share the same key, the invalid symbol, ⊥ ,
is returned. Otherwise, a coin b is flipped. If b=1, the session-key, sk , which is shared
between s

iU and u
jU , is returned; if b=0, a string that is randomly drawn from a session-key

distribution is returned.

At some point during the game, a TestPair query is asked to a fresh oracle for the curious
server. As in the above definition, we define the advantage of the curious server, A, as

, () 2Pr[] 1curSvr
P AAdv k = −CG and the advantage function as (,)curSvr

PAdv k t = ,max{ ()}curSvr
P AA

Adv k .

Freshness for the Curious Server. We say an oracle s

iU is fresh if the following conditions

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 319

hold.
(1) There exists an instance, t

jU , which is partnered with s
iU .

(2) s
iU has computed a session-key, s

iU
sk ≠NULL, and neither s

iU nor t
jU has been asked

the Reveal query.

Definition 2. We say a protocol, P, is secure from the curious server, if the following two
properties are satisfied.

- Validity: If all the oracles in a session are partnered, the session-keys of all the oracles are
the same.

- Key secrecy: (,)curSvr
PAdv k t is bounded by ()kε , where ()kε is a negligible function.

4. A Light-Weight PAKE Protocol in the Three-party Setting

We now present our protocol LPAKE for 3-party PAKE. Let ,p q be two primes such that p =
2q+1, where p is a safe prime such that the decision Diffie-Hellman problem is hard to solve in
G. A finite cyclic group G has order q. The terms, 1g and 2g , are generators of G both having
order q, where 1g and 2g must be generated so that their discrete logarithmic relation cannot
be known. Let (. , .)M Mac G MacV= be a strongly unforgeable MAC algorithm. Let

. ()kMAC G mτ = denote the MAC of message m under key k . . (,)kMacV m τ outputs 1, if
τ is a valid MAC for m under key k . Otherwise, . (,)kMacV m τ outputs 0. Let H be a hash
function satisfying the collision-free property from {0,1}∗ to *

q . We note that H is not
modeled as a random oracle but is just used for binding a user id and the password. Let F be a
secure pseudorandom function family.

An example of an execution of LPAKE is shown in Fig. 1.

Initialization. Each user iU ∈U for {1,2}i∈ obtains ipw at the start of the protocol by using a
password generation algorithm PG (1)k . We assume that each user iU and server S have
shared (|| ||)

2 mod i iH U S pw
iPW g p= , the public information, and the identity of users who want to

exchange a session-key.

Round 1. Each user iU chooses a random number *

i qx ∈ , computes , 1 modix
i S iX g PW p= ⋅ ,

and sends ,(,)i i SU X to the server S. For {1,2}i = , S chooses random numbers *
i qy ∈ ,

computes , 1 modiy
S i iX g PW p= ⋅ , and broadcasts (,S ,1 ,2,)S SX X .

Round 2. Upon receiving (,S ,1 ,2,)S SX X , each user iU computes , ,(/) modix

i S S i ik X PW p=
and

,, , ,. (|| || ||)
i Si S k i i S S iMac G U S X Xτ = and sends ,(,)i i SU τ to S.

Round 3. Upon receiving ,(,)i i SU τ , for {1,2}i = , S computes

, ,. ()
S ik i SMacV τ where

, ,(/) modiy
S i i S ik X PW p= . S halts if at least one of

, ,. ()
S ik i SMacV τ returns 0. Otherwise,

320 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

proceed to the next process. For {1,2}i = , S selects a random number *
qs∈ , computes

1
, 1()ix s

S iY g += and
,, 1 ,. (|| ||)

S iS i k i i S iMac G U U Yτ += , and sends , ,(|| ||)S i S iS Y τ to each user iU .

Key computation. Upon receiving , ,(|| ||)S i S iS Y τ , each user iU computes

, ,. ()
i Sk S iMacV τ .

Each user iU halts if
, ,. ()

i Sk S iMacV τ returns 0. Otherwise, each user iU computes ,() ix
i S iK Y=

mod p and the session-key 1 2(|| ||)
ii Ksk F U S U= , where 1 2U U< .

Fig. 1. An example of an execution of LPAKE

Completeness. In an honest execution of the protocol, both users 1U and 2U calculate an
identical session-key as 1 2(|| ||)Ksk F U S U= , where 1 2

1
x x sK g= .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 321

5. Security Analysis
Security from Outside Attackers. The following theorem says that LPAKE is secure from
outside attackers, since any adversary can test only one guessed password through a run of
LPAKE. That is, the adversary can engage in only detectable online dictionary attacks.

Theorem 1. Let G be a group in which the DDH assumption holds. Let F be a family of secure
pseudorandom functions and M be an unforgeable MAC algorithm. Then, LPAKE is a secure
protocol. More precisely,

2

(, , , ,) (2 12) () 4 (,) 2 (, , ,)

2() 2() ,

outAtt U S ddh suf U prf
LPAKE ex se se ex s G M se F

U S S
se se ex se

Adv k t q q q q N Adv t Adv k q Adv k T q h

q q q q
PW q

≤ + + +

+ +
+ +

where t is the maximum total game time, including an adversary’s running time. An adversary
makes exq Execute queries. U

seq and S
seq are the numbers of the (,)S

iSend U M and
(,)tSend S M queries, respectively. sN is the upper bound on the number of sessions that an

adversary makes. PW is the size of the password space.

Proof of Theorem 1. All parameter choices depend on a security parameter k. Let ()ddh

GAdv t
denote the maximum advantage which is over all adversaries As that solve the DDH problem
running in time at most t. Let ()suf

MAdv k denote the maximum advantage which is over all
adversaries As that break the strong unforgeability of M running in time t and making at most q
queries to its M oracle. Let (, , ,)prf

FAdv k T q h denote the maximum advantage which is over all
adversaries As that break the pseudorandomness of F with time complexity T making at most q
oracle queries and the sum of the length of these queries being at most h bits.

Consider an adversary A that is attacking LPAKE in the sense of forward secrecy and
security from known-key attacks. In this proof, we prove that the best strategy the adversary
can take is to verify a guessed password in the password dictionary through a run. Assume that
A breaks LPAKE with a non-negligible probability. The advantage of A can arise from the
following two cases.

(Case 1) For the Test oracle, S
iU , there exists t

jU , which is partnered with S
iU .

(Case 2) For the Test oracle, S
iU , there exists no instance of jU , which is partnered with S

iU ,

where s
i jpid U= .

For {1,2}i = , let (, , , ,)outAtt Casei U S

LPAKE ex se seAdv k t q q q− be the advantage of an adversary from Case i.
Then we have

1 2(, , , ,) (, , ,) (, , , ,)outAtt U S outAtt Case S outAtt Case U S

LPAKE ex se se LPAKE ex se LPAKE ex se seAdv k t q q q Adv k t q q Adv k t q q q− −= + .

Case 1 measures the forward secrecy of LPAKE. This means that even with the long-term
keys of parties, no adversary can learn any information about session-keys that are
successfully established between honest parties without any interruption. Consider the
advantage from Case 1.

322 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

Claim 1.
2

1 2()(, , ,) 2 () .
S

outAtt Case S ddh ex se
LPAKE ex se ex G

q qAdv k t q q q Adv t
q

− +
≤ +

Proof of Claim 1. If the advantage of an adversary is from Case 1, the passwords of the parties
may be revealed through Corrupt queries. Although Corrupt queries are allowed for the Test
oracle, S

iU , all instances in S
ipid are executed by Execute queries by the definition of the

freshness (for outside attackers). This case may be viewed as one in which there are no
passwords in the protocol. Thus, we may ignore Corrupt queries.

A user may get information about the session-key of a particular session that the user did not
participate in, if a random number that is used by the user to generate a message X is also used
by other users in other sessions. The other case allows us to solve the DDH problem. The
advantage from Case 1 is:

1 1 1(, , ,) (, , ,) (, ,).outAtt Case S outAtt Case Col S outAtt Case Col
LPAKE ex se LPAKE ex se LPAKE exAdv k t q q Adv k t q q Adv k t q− − − − −≤ +

Let Col be the event that there exists a user, iU , in session s such that the random number,

ix , which is used by the user, iU , is equal to the random number, jx , which is used by the
user, in session 's . The probability that this event occurs, Pr[Col], is bounded by the birthday

paradox as
2()S

ex seq q
q
+ . This immediately implies that

2
1 2()(, , ,) 2Pr[CG Col] 1 2Pr[Col] ,

S
outAtt Case Col S ex se
LPAKE ex se

q qAdv k t q q
q

− − +
= ∧ − ≤ ≤ (1)

where q is the size of the group, G.

We consider the advantage in the case without the event, Col. We assume an adversary, A,
which is making only a single 1 2(, ,)s t uExecute U S U query (notice that this is sufficient for
supporting Theorem 1). The users, 1U and 2U , are chosen by A. The distribution of the
transcript, T, and the resulting session-key, sk, of LPAKE are given by:

1 2 1 2 1 2

1 1 2 2
1 1 2 2

1 1

2 1
1 1 2 2

1 1

1

1 2 1 2 1 1 1 1 1 1

1, 1 1 1 2, 2 1 1

,1 1 2 1 ,2 2 1 1

1

, , , , ; , , , , ,

. (|| || ||), . (|| || ||)

Real . (|| ||), . (|| ||)

(,

x y x y

x y x y

x x y y x s x s
R q

x y x y
S Sg g

def
x s x s

S Sg g

x

x x y y s g g g g g g

Mac G U S g g Mac G U S g g

Mac G U U g Mac G U U g

T g

τ τ

τ τ

∗←

= =

= = =

= 2 1 2 2 1

1 2

1 1 1 1 1 1, 2, ,1 ,2

1 1 2

, , , , , , , ,)

; (|| ||)

x y y x s x s
S S S S

x x s
K

g g g g g

K g sk F U S U

τ τ τ τ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

= =⎪ ⎪⎩ ⎭

.

Consider the following randomized distribution:

1 2 1 2 1 2

1 1 2 2
1 1 2 2

1 1

2 1
1 1 2 2

1 1

1 2 1 2 1 1 1 1 1 1

1, 1 1 1 2, 2 1 1

,1 1 2 1 ,2 2 1 1

1

, , , , , ; , , , , ,

. (|| || ||), . (|| || ||)

Fake . (|| ||), . (|| ||)

(

x y x y

x y x y

x x y y x s x s
R q

x y x y
S Sg g

def
x s x s

S Sg g

x

x x y y s w g g g g g g

Mac G U S g g Mac G U S g g

Mac G U U g Mac G U U g

T g

τ τ

τ τ

∗←

= =

= = =

= 1 2 1 2 2 1
1 1 1 1 1 1, 2, ,1 ,2

1 1 2

, , , , , , , , ,)

; (|| ||)

x y y x s x s
S S S S

w
K

g g g g g

K g sk F U S U

τ τ τ τ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

= =⎪ ⎪⎩ ⎭

.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 323

A standard argument shows that for any probabilistic polynomial-time (ppt) algorithm A
that is running in time t,

| Pr[(,) Real : (,) 1] Pr[(,) Fake : (,) 1] | ().ddh

GT sk A T sk T sk A T sk Adv t← = − ← = ≤

This is true since the value of k in Fake is independent from the values 1 2 2 1
1 1 1 1(, ; ,)x x s x x sg g g g in

T, and thus, from the value of sk. This implies that for any A,

0 1| Pr[(,) Fake; {0,1} : (,)] 1/ 2,k
R bT sk sk A T sk b← ← = =

which leads to 1 (, ,1) 2 ()outAtt Case Col ddh

LPAKE GAdv k t Adv t− − ≤ . We note that this immediately yields – via
a standard hybrid argument – that

1 (, ,) 2 ()outAtt Case Col ddh
LPAKE ex ex GAdv k t q q Adv t− − ≤ . (2)

Equations (1) and (2) yield the desired result.

Claim 2. 2 (, , , ,) 12 () 4 (,) 2 (, , ,)outAtt Case U S ddh suf S prf
LPAKE ex se se s G M se FAdv k t q q q N Adv t Adv k q Adv k T q h− ≤ + +

2() .
U S
se seq q
PW
+

+

Proof of Claim 2. To compute the upper bound on the advantage from Case 2, we assume that
an adversary, A, gets the advantage from Case 2. Informally, there are only two ways by which
an adversary can get information about a particular session-key: either the adversary
successfully breaks the authentication part, which means that the adversary correctly guesses
the passwords, or the adversary correctly guesses the bit, b, which is involved in the Test query.
To evaluate this advantage, we incrementally define a sequence of hybrid experiments
wherein there are some modifications per experiment; the sequence starts at the real
experiment, 0Exp , and ends up at 4Exp . We simulate the experiments and then consider the
adversary’s attack on the simulated protocol. We denote the probability that an event E occurs
in iExp as Pr []i E .

Experiment 0Exp . This is the real attack. The server and each user are given ipw for iU ∈U .
In this experiment, all the oracles in the game, which define the advantage of an adversary as
in Section 3, are allowed to the adversary. The instances of the parties respectively answer
each Send query with independent random exponents. The Execute query proceeds similarly.
Thus, the instances can easily answer to the Reveal, Corrupt, and Test queries. By definition,

 0Pr [CG] ((, , , ,) 1) / 2outAtt U S

LPAKE ex se seAdv k t q q q= + . (3)

Experiment 1Exp : We define the event, AskSend-WithPW, as the event that a flow m is
generated by an adversary under pw and a query (,)sSend P m is asked by the adversary. In this
experiment, we delete the executions wherein the event, AskSend-WithPW, occurs. In these
executions, we stop choosing b′ at random.

324 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

0 1 1| Pr [CG]-Pr [CG] | Pr [AskSend-WithPW].≤

Experiment 2Exp : In this experiment, we replace each MAC key that is used in the protocol
with a random key. We can use a standard hybrid argument because the MAC keys are all
independent. We show that the difference between the probabilities of success of an adversary
in the previous and current experiments is negligible, if the DDH assumption holds and as long
as the event, AskSend-WithPW, does not occur. Formally,

1 2| Pr [CG]-Pr [CG] | 2 ().ddh
s GN Adv t≤

The concrete description of this experiment is as follows.

1. Select the passwords for all users in U by executing PG (1)k . Let U = 1 2{ , }U U . Compute

1PW and 2PW by using the selected passwords.
2. Select a user, iU , from U and a random number, ,i Sw . Use ,i Sw as the MAC key,

, ,()i S S ik k , instead of 1
i ix yg .

3. Use 1 1
1

j jx yg + + as the MAC key, 1, , 1()j S S jk k+ + , where j = i mod 2.

4. Compute the session-key as in 1Exp .
5. For all oracle queries of an adversary, answer them as in 1Exp , under the above

restriction.

We construct a distinguisher, D, which solves the DDH problem by using the difference in

the advantage of an adversary, A, between 1Exp and 2Exp . D is given an instance of the
DDH problem, 1(, , ,)g U V W , for which the base is 1g . D uses the instance by the random
self-reducibility of the DDH problem. D perfectly simulates either 1Exp or 2Exp depending
on whether or not 1(, , ,)g U V W is a DDH triple. That is, if 1(, , ,)g U V W is a DDH triple, D
simulates 1Exp ; otherwise, D simulates 2Exp . We assume that A makes only a single Execute
query and a single Send query. Let (,)s

rSend P M be the rth round’s Send query in the case of
the instance, sP . The concrete description of D is:

1(, , ,)D g U V W

1. Select the passwords for U = 1 2{ , }U U by executing PG (1)k and compute 1PW and 2PW

by using the selected passwords.
2. Select 'i from U and give A the passwords for all malicious users in U.
3. For u

1 2(, ,)s tExecute U S U and 0 (,)Send SU , randomly select 1 2, ,s sσ , and compute
1

1 = sU gσ ⋅U and 2
1 = sV g⋅V . Compute 1, 1SX PW= ⋅U and ,1 1SX PW= ⋅V , and ,2SX and

2,SX as in 1Exp .
4. For u

1 2(, ,)s tExecute U S U , 1 ,(,)s
i S iSend U X and 1 ,(,)t

i SSend S X :
- If ,S iX or ,i SX has been computed by D and i i′ = , then compute

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 325

2 1 1 2
1 = s s s sW U V gσσ ⋅ ⋅ ⋅W and use W as the MAC key ', , '()i S S iτ τ , and if i i′ ≠ , then

compute the MAC key , ,()i S S iτ τ as in 1Exp .
- If ,S iX or ,i SX has not been previously computed by D, then proceed as in 1Exp .

5. Compute the session-key as in 1Exp .
6. For ()s

iTest U , s
iU is fresh, return sk without coin flipping.

7. For all oracle queries of A, answer them following the protocol under the above
restriction.

8. If A terminates with 'b , returns 'b and halts.

Consider the case that either ,S iX or ,i SX of 1 ,(,)s

i S iSend U X and 1 ,(,)t
i SSend S X has not

been previously computed by D. Even though the user-instance that is involved in the queries
accepts itself, its partner may not be an oracle-instance. Thus, a Test query that involves the
instance may always return the invalid symbol, ⊥ . Therefore the advantage of D, by
combining the probability that D correctly guesses i′ , is:

, 1 1 1 1 1 1

1 1 1 1 1 1

1 2

| Pr[, ; (, , ,) (, , ,) : (, , ,) 1]

Pr[, , ; (, , ,) (, , ,) : (, , ,) 1] |

1 |Pr [CG]-Pr [CG]|,
2

ddh u v uv
G D R q

u v w
R q

Adv u v g U V W g g g g D g U V W

u v w g U V W g g g g D g U V W

∗

∗

= ← ← = −

← ← =

=

which – in conjunction with the fact that A makes at most Ns sessions – leads (via a standard
hybrid argument) to:

1 2| Pr [CG]-Pr [CG] | 2 ().ddh
s GN Adv t≤ (4)

The security from offline dictionary attacks and undetectable online dictionary attacks is

measured by the probability that AskSend-WithPW occurs. In experiment 2Exp , we have
changed the computation of the MAC keys. We have replaced each MAC key with a random
key by using standard hybrid arguments. After this modification, the probability that the
adversary will see the difference between the previous and current experiments is to solve the
DDH problem. We have:

1 2| Pr [AskSend-WithPW] Pr [AskSend-WithPW] | 2 ().ddh
s GN Adv t− ≤ (5)

Experiment 3Exp : Let Forge be the event that an adversary, A, against key-privacy outputs a
new, valid message-tag pair in Round 3, where the message was not previously sent by the
server. In other words, A is sending a message it has built by itself, after having seen at most

U
seq valid message-tag pairs. We note that although A forges a MAC tag in Round 2, the forged

MAC is not helpful for A in breaking the key-privacy as long as it does not solve the DDH
problem and AskSend-WithPW has not occurred. So, we only consider forger A, who forges a
MAC tag in Round 3 (the MAC tags in Round 2 are used to detect online dictionary attacks).
We construct 'M , which breaks the MAC algorithm, M , by using A. 'M is given a
MAC-generation oracle . ()Mac G ⋅ and a MAC-verification oracle . ()MacV ⋅ . The concrete
description of 'M is:

326 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

. (), . ()Mac G Mac VM ⋅ ⋅′

1. Select the passwords for all users in U by executing PG (1)k .
2. Give A the passwords for all malicious users in U.
3. Select i from U and use MAC oracles to generate and verify MAC values for user iU

from S.
4. For all oracle queries of A, answer as in 2Exp under the above restriction.
5. If a forged message-tag pair , ,(,)S i S iY τ for iU is found during simulation such that

, ,. (,) 1S i S iMacV Y τ = , output , ,(,)S i S iY τ and halt.

The probability of success of 'M depends on whether or not A makes a forged massage-tag

pair and 'M correctly guesses i. If these guesses are correct, the simulation is perfect. In this
experiment, the probability that AskSend-WithPW occurs is the same as that in the previous
experiment, 2Exp . So, this immediately implies:

2 3| Pr [CG] Pr [CG] | Pr[Forge] 2 (,),suf U

M seAdv k q− ≤ ≤
2 3Pr [AskSend-WithPW] Pr [AskSend-WithPW].= (6)

Experiment 4Exp : In this experiment, we replace the family, F, of pseudorandom functions
that is used to derive a session-key with a random function. That is, in 3Exp , a session-key is
computed by using a family, F, of pseudorandom functions; here, a session-key is computed
by using a random function, g. We show that if F is a family of secure pseudorandom functions,
the difference in the probability of success of an adversary between the previous and current
experiments is negligible. Formally,

() ()

3 4

(, , ,)

| Pr[() : 1] - Pr[: 1] |
| Pr [CG]-Pr [CG] | .

K

prf
F

F D R g
R R

Adv k T q h

K Keys F D g Rand D⋅ → ⋅= ← = ← =
=

Consider a distinguisher, D, for breaking the pseudorandomness of a family, F, of

pseudorandom functions that uses the difference in the advantage of an adversary, A, between
2Exp and 3Exp . D is given an oracle-function, ()f ⋅ , in the experiment into the

pseudorandomness of the family, F, of functions. D simulates either 2Exp or 3Exp
depending on whether or not ()f ⋅ is a function from F. The concrete description of D is:

()fD ⋅

1. For all oracle queries of A, D answers them as in 3Exp by using an oracle function ()f ⋅

instead of F to make a session-key.
2. If A terminates with 'b , D returns 'b and halts.

The advantage of D for breaking a pseudorandom-function family (with a probability that is
related to A’s probability of success) is that

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 327

3 4| Pr [CG]-Pr [CG] | (, , ,),prf
FAdv k T q h=

3 4Pr [AskSend-WithPW] Pr [AskSend-WithPW].= (7)

Note that in this experiment, the probability that AskSend-WithPW occurs is the same as
that in the previous experiment, 3Exp .

In 4Exp , the answers to the Test queries are purely random. That is, the bit, b, which is used
by the Test oracle cannot be guessed by the adversary better than by random.

4
1Pr [CG] |
2

= . (8)

Experiment ∗4

Exp : To measure 1Pr [AskSend-WithPW] , we define an auxiliary that is

similar to 4Exp . In this experiment, the view of the adversary is perfectly independent from
the passwords of the users. The difference between the experiments is in the way the Execute
and Send queries are answered. In this experiment, on 0 (,)Send SU , the set, U, and S
randomly choose iX and iY from G, and respectively send them. Notice that in 4Exp , iU
and S respectively compute 1 mod ix

i iX g PW p= ⋅ and 1 mod iy
i iY g PW p= ⋅ before sending

them. For any adversary, we have via a standard hybrid argument,

4 4
| Pr [AskSend-WithPW] Pr [AskSend-WithPW] | 2 ().ddh

s GN Adv t∗− ≤ (9)

From an information-theoretical viewpoint, in this execution, the adversary cannot get
information on the passwords with instances of the protocol in an offline manner, since the
transcripts are indistinguishable from a random transcript in G. Thus, the transcripts are
completely independent from the passwords. We remark that the passwords cannot be
correctly guessed by the adversary better than by sending a message that is generated under a
guessed password. That is,

4Pr [AskSend-WithPW] () / .U S

se seq q PW= + (10)

From Equations (3)-(10), the advantage from Case 2 is bounded as follows.

2 2()(, , , ,) 12 () 4 (,) 2 (, , ,) .
U S

outAtt Case U S ddh suf S prf se se
LPAKE ex se se s G M se F

q qAdv k t q q q N Adv t Adv k q Adv k T q h
PW

− +
≤ + + +

Finally, from Claim 1 and Claim 2, Theorem 1 follows.

1 2

2

(, , , ,) (, , ,) (, , , ,)

(2 12) () 4 (,) 2 (, , ,)

2() 2() .

outAtt U S outAtt Case S outAtt Case U S
LPAKE ex se se LPAKE ex se LPAKE ex se se

ddh suf U prf
ex s G M se F

U S S
se se ex se

Adv k t q q q Adv k t q q Adv k t q q q

q N Adv t Adv k q Adv k T q h

q q q q
PW q

− −= +

≤ + + +

+ +
+ +

328 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

Security from the Curious Server. The following theorem says that LPAKE is secure from the
curious server. That is, the server cannot know the session-keys between the users, even
though the server knows the passwords of the users.

Theorem 2. Let G be a group in which the DDH assumption holds. Let F be a family of secure
pseudorandom functions. Then, LPAKE is secure from the curious server. More precisely,

(, , ,) 2 () 2 (, , ,),curSvr U ddh prf
LPAKE ex se s G FAdv k t q q N Adv t Adv k T q h≤ +

where t is the maximum total game time, including an adversary’s running time. sN is the
upper bound on the number of sessions that an adversary makes.

Proof of Theorem 2. This theorem shows that LPAKE provides key-secrecy with respect to the
server, if the DDH assumption holds in G and if F is a family of secure pseudorandom
functions. Assume that the curious server, S, breaks key-privacy with a non-negligible
probability. To measure the advantage of S, we define two experiments, 0Exp and 1Exp .

0Exp is the real attack in which the server and each user are given ipw for all iU ∈U . S can
access the Execute, (,)s

iSend U M , and Test oracles. Since the instances for the server know
the passwords, they can easily answer to the queries in 0Exp . By definition,

0Pr [CG] ((, , ,) 1) / 2.curSvr U
LPAKE ex seAdv k t q q= + (11)

Experiment 1Exp : In this experiment, we replace the session-key with a random value from
the session-key space.

We construct a distinguisher, D, which solves the DDH problem by using the difference in
the advantage of the adversary, S, between 0Exp and 1Exp . D is given 1(, , ,)g U V W , which
is an instance of the DDH problem for which the base is 1g . D uses the instance by the random
self-reducibility of the DDH problem. D perfectly simulates either 0Exp or 1Exp depending
on whether or not 1(, , ,)g U V W is a DDH triple. That is, if 1(, , ,)g U V W is a DDH triple, D
simulates 0Exp ; otherwise, it simulates 1Exp . We assume that S is making only a single
Execute query and a single (,)tSend S M query. The simulation of the Execute query is the
same as that in Claim 1 of Theorem 1. The concrete description of D is:

1(, , ,)D g U V W

1. Select the passwords for U = 1 2{ , }U U by executing PG (1)k and compute 1PW and 2PW

by using the selected passwords.
2. Give S the passwords for all users in U.
3. For 0 (,)Send SU , randomly select 1 2, ,s sσ , and compute 1

1 = sU gσ ⋅U and 2
1 = sV g⋅V .

Compute 1, 1SX PW= ⋅U and 2, 1SX PW= ⋅V , and ,1SX and ,2SX as in 0Exp .

4. For 3 ,(,)s
i S iSend U Y :

- If ,S iY has been computed by D, then compute 2 1 1 2
1 = s s s sW U V gσσ ⋅ ⋅ ⋅W . Select a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 329

random number γ from q
∗ and use ()γW as the session-key.

- If ,S iY has not been previously computed by D, then proceed as in 0Exp .
5. For 1 2(,)s uTestPair U U , check 1

sU and 2
uU have the same key. If this check fails, return

the invalid symbol, ⊥ . If this check passes and if 1
sU is fresh, return sk without coin

flipping.
6. For all oracle queries of S, answer them following the protocol under the above

restriction.
7. If S terminates with 'b , D returns 'b and halts.

Consider the case that ,S iY of 3 ,(,)s

i S iSend U Y has not been previously computed by D. Even
though the user-instance that is involved in the queries accepts itself, a TestPair query that
involves the instance may always return the invalid symbol, ⊥ . Therefore, the advantage of D
is:

, 1 1 1 1 1 1

1 1 1 1 1 1

0 1

| Pr[, ; (, , ,) (, , ,) : (, , ,) 1]

Pr[, , ; (, , ,) (, , ,) : (, , ,) 1] |

|Pr [CG] - Pr [CG]|,

ddh u v uv
G D R q

u v w
R q

Adv u v g U V W g g g g D g U V W

u v w g U V W g g g g D g U V W

∗

∗

= ← ← = −

← ← =

=

which – in conjunction with the fact that S makes at most sN sessions – leads (via a standard
hybrid argument) to

0 1|Pr [CG] - Pr [CG]| ()ddh
s GN Adv t≤ . (12)

Experiment 2Exp : We replace the family, F, of pseudorandom functions that is used to
derive a session-key with a random function.

The proof of the probability for the advantage of seeing the difference between the current
and previous experiments follows the same path as the proof of Equation (7) in Claim 2. The
probability that S correctly guesses the bit, b, which is involved in the TestPair oracle, is ½, as
in the proof of Equation (8) in Claim 2.

1 2|Pr [CG] - Pr [CG]| = (, , ,)prf
FAdv k T q h ,

2
1Pr [CG] = .
2

 (13)

From Equations (11)-(13), Theorem 2 follows.

6. Efficiency Analysis

Because modular exponentiation is the computationally expensive operation in many
cryptographic protocols, we compare the number of modular exponentiations that each user
and the server compute. A moular exponentiation in p

∗ corresponds a multiplication in an
elliptic curve group. With a 160-bit modulus, an elliptic curve system offers the same level of
cryptographic security as DSA or RSA with 1024-bit moduli. The smaller key sizes result in

330 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

smaller system parameters, smaller public-key certificates, bandwidth savings, faster
implementations, lower power requirements, and smaller hardware processors [17]. From this
point of view, elliptic curves have been used in the area of mobile and wireless communication
networks.

Table 2. Times for elliptic curve point multiplication

Phone/ECC key size 160 bits 192 bits 224 bits

Nokia 6600 (104 MHz CPU) 81 ms 118 ms 160 ms
Nokia 6670 (123 MHz CPU) 68 ms 98 ms 137 ms

Table 2 shows, for various values of ECC key size, the times required to compute a single

elliptic curve point multiplication, that is the calculation of r P⋅ , where r is chosen at random
and P is a point of order p. This table is the output of a benchmark by Wong, on two Nokia
camera phones, compiled with the development environment of Symbian’s Series 60
Developer Platform 2.0 SDK [29]. Wang ported the relevant C routines from the Shamus
MIRACL [28] cryptographic library to the Symbian OS 7.0s used in several Nokia camera
phones. Table 3 shows, for various values of ECC key size, the times in milliseconds required
to compute elliptic curve point multiplication on the PAKE protocols in Table 1.

Table 3. Times for elliptic curve point multiplication on 123 MHz Nokia 6670

Size of ECC
key size

GPAKE [2] AP [4] LPAKE (our scheme)
User Server User Server User Server

160 bits ≥ 1377ms ≥ 1377ms 162 ms 162 ms 324 ms 486 ms
192 bits ≥ 2006 ms ≥ 2006 ms 236 ms 236 ms 472 ms 708 ms
224 bits ≥ 2720 ms ≥ 2720 ms 320 ms 320 ms 640 ms 960 ms

7. Conclusion
In this paper, we have proposed a practical PAKE protocol in the three-party setting, which is
secure from undetectable online and offline dictionary attacks without random oracles. Our
protocol requires only three rounds and four modular exponentiations per user. Furthermore,
our protocol provides forward secrecy, key secrecy from curious servers, and security from
known-key attacks.

References
[1] Y. Ding and P. Horster, “Undetectable on-line password guessing attacks,” ACM Operating

Systems Review, vol. 29, no. 4, pp. 77-86, 1995.
[2] M. Steiner, G. Tsudik, and M. Waidner, “Refinement and extension of encrypted key exchange,”

ACM SIGOPS Operating Systems Review, vol. 29, no. 3, pp. 22-30, July 1995.
[3] C.-L. Lin, H.-M. Sun, M. Steiner, and T. Hwang, “Three-party encrypted key exchange without

server public keys,” IEEE Communication Letters, vol. 5, no. 12, pp. 497-499, 2001.
[4] J.W. Byun, I.R. Jeong, D.H. Lee, and C.-S. Park, “Password-Authenticated Key Exchange

between Clients with Different Passwords,” In Proc. of ICICS ’02, LNCS, vol. 2513, pp.134-146,
2002.

[5] M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Password-Based Authenticated Key Exchange in
the Three-Party Setting,” In Proc. of PKC ’05, LNCS, vol. 3386, pp.65-84, 2005.

[6] M. Abdalla and D. Pointcheval, “Interactive Diffie-Hellman assumptions with applications to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 331

password-based authentication,” In Proc. of Financial Cryptography 2005, LNCS, vol. 3570, pp.
341-356, 2005.

[7] R. Lu and Z. Cao, “Simple three-party key exchange protocol,” Computers & Security, vol. 26, no.
1, pp. 94-97, 2007.

[8] H-R. Chung and W-C. Ku, “Three weaknesses in a simple three-party key exchange protocol,”
Information Sciences, vol. 178, no. 1, pp. 220-229, 2008.

[9] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology, revisited,” In Proc. of
the 32nd Annual ACM Symposium on Theory of Computing, pp.209-218, 1998.

[10] J. B. Nielsen, “Separating Random Oracle Proofs from Complexity Theoretic Proofs: The
Non-Committing Encryption Case,” In Proc. of CRYPTO ’02, LNCS, vol. 2442, pp. 111-126,
2002.

[11] S. Goldwasser and Y. Taumen, “On the (in)security of the Fiat-Shamir Paradigm,” In Proc. of
STOC ’03, pp. 102-115, 2003.

[12] R. Canetti, O. Goldreich, and S. Halevi, “On the Random-Oracle Methodology as Applied to
Length-Restricted Signature Schemes,” In Proc. of 1st Theory of Cryptography Conference (TCC),
LNCS, vol. 2951, pp. 40-57, 2004.

[13] M. Bellare, A. Boldyreva, and A. Palacio, “An Uninstantiable Random-Oracle-Model Scheme for
a Hybrid-Encryption Problem, ” In Proc. of EUROCRYPT ’04, LNCS, vol. 3027, pp. 171-188,
2004.

[14] J. Katz, R. Ostrovsky, and M. Yung, “Efficient password-authenticated key exchange using
human-memorable passwords,” In Proc. of Eurocrypt ’01, LNCS, vol. 2045, pp. 475-494, 2001.

[15] M. Bellare and P. Rogaway, “Provably secure session-key distribution - the three party case,” In
Proc. of 28th Annual ACM Symposium on Theory of Computing, pp. 57-66, 1996.

[16] O. Goldreich and Y. Lindell, “Session-Key Generation using Human Passwords Only”, In Proc. of
Crypto ’01, LNCS, vol. 2139, pp. 408-432, 2001.

[17] J. Katz, R. Ostrovsky, and M. Yung, “Forward secrecy in Password-only Key Exchange
Protocols,” In Proc. of SCN ’02, LNCS, vol. 2576, pp. 29-44, 2002.

[18] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key exchange secure against
dictionary attack,” In Proc. of Eurocrypt ’00, LNCS, vol. 1807, pp. 139-155, 2000.

Jeong Ok Kwon received the B.S. degree in Computer Science from Dongduk
Woman's University, Korea in 2000. She received the M.S. and Ph.D. degrees in
Information Security from Korea University, Korea, in 2003 and 2007, respectively.
Currently, she is a research professor in Korea University, Seoul, Korea. Her current
research interests include cryptography and information security.

Ik Rae Jeong received the B.S. and M.S. degrees in Computer Science from Korea
University, Korea, in 1998 and 2000, respectively. He received the Ph.D. degree in
Information Security from Korea University in 2004. From June 2006 to Feb. 2008,
he was a senior engineer at ETRI (Electronics and Telecommunications Research
Institute) in Korea. Currently, he is a member of the faculty in the Division of
Information Management Engineering, Korea University, Seoul, Korea. His current
research areas include cryptography and theoretical computer science.

332 Kwon et al.: Practical Password-Authenticated Three-Party Key Exchange

Dong Hoon Lee received the B.S. degree in Economics from Korea University,
Korea, in 1984. He received the M.S. and Ph.D. degrees in Computer Science from
the University of Oklahoma, US, in 1988 and 1992, respectively. Currently, he is a
member of the faculty in the Graduate School of Information Management &
Security, Korea University, Seoul, Korea. His current research areas include
cryptographic protocol, RFID/USN security, privacy-preserving technologies.

