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Abstract 
 

Password-based authentication key exchange (PAKE) protocols in the literature typically 
assume a password that is shared between a client and a server. PAKE has been applied in 
various environments, especially in the “client-server” applications of remotely accessed 
systems, such as e-banking. With the rapid developments in modern communication 
environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct 
a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In 
such a peer-to-peer channel, it would be much more common for users to not share a password 
with others. In this paper, we consider password-based authentication key exchange in the 
three-party setting, where two users do not share a password between themselves but only with 
one server. The users make a session-key by using their different passwords with the help of 
the server. We propose an efficient password-based authentication key exchange protocol with 
different passwords that achieves forward secrecy in the standard model. The protocol requires 
parties to only memorize human-memorable passwords; all other information that is necessary 
to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only 
three rounds and four modular exponentiations per user. In fact, this amount of computation 
and the number of rounds are comparable to the most efficient password-based authentication 
key exchange protocol in the random-oracle model. The dispensation of random oracles in the 
protocol does not require the security of any expensive signature schemes or zero-knowlegde 
proofs. 
 
 
Keywords: Cryptography, provably security, key exchange, three-party setting, dictionary 
attacks, undetectable dictionary attacks 
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1. Introduction 

To communicate securely over an insecure public network, it is essential that secret 
session-keys are exchanged securely. The shared secret key may be subsequently used to 
achieve some cryptographic goals, such as confidentiality or data integrity. In key-exchange 
protocols that are based on either public-keys or symmetric-keys, a party has to keep long 
random secret keys. However, it is difficult for a human to memorize a long random string; 
thus, a party uses an additional storage device to keep the random string. On the other hand, 
password-based authenticated key exchange (PAKE) protocols allow two or more specified 
parties to share a secret key by using only a human-memorable password. Hence, PAKE 
protocols do not require that each party hold some devices such as smart cards or hardware 
tokens. From this point of view, PAKE provides convenience and mobility. PAKE can be used 
in several environments, especially in networks where a security infrastructure like PKI 
(public-key infrastructure) is not deployed. PAKE has also received significant attention in 
mobile networks where mobile devices have relatively small computing power. 

The design of secure and efficient PAKE protocols for two parties has been extensively 
pursued in the last few years. Most of the protocols assume that the two users have a common, 
pre-shared password. However, this assumption is hard to satisfy in some applications. It 
would be more plausible to assume that a user wants to communicate securely with another 
user with the two different passwords. In such a case, a two-pary PAKE protocol is hard to 
implement since the number of passwords that a user has to memorize linearly increases with 
the number of possible partners. PAKE with different passwords in the three-party setting 
surmounts all the above problems. In this setting, each user shares a password only with a 
trusted server. The trusted server authenticates two users and helps the users with different 
passwords share a common session-key. It thus requires each user to only remember a single 
password with the trusted server. Consequently, three-party PAKE protocols can limit the 
number of passwords that each user must memorize. However, the server has to participate in 
the protocol run to help two users share a session-key. 

In relation to other security models, the most distinguishable characteristic of the PAKE 
security model is that the model must incorporate protection from dictionary attacks. 
Dictionary attacks are possible because of the low entropy of the password space. In practice, 
a password consists of either four or eight characters, such as a natural language phrase, to be 
easily memorized. The set of these probable passwords is small. As a consequence, the 
dictionary of passwords is relatively small. Usually, dictionary attacks are classified into two 
classes: online and offline. In online dictionary attacks, an adversary attempts to use a guessed 
password by participating in a key-exchange protocol. If the protocol run fails, the adversary 
initiates a new protocol run by using another guessed password. These online attacks require 
the participation of the server. 

In offline dictionary attacks, an adversary selects a password from a dictionary and verifies 
his guess in an offline manner, i.e., the adversary uses only recorded transcripts from a 
successful run of the protocol. So, these offline attacks are undetectable. Even if there exists 
only a bit of redundant information in the protocol messages, an adversary will perform an 
offline dictionary attack by using the redundancy as a verifier for checking whether or not a 
guessed password is correct. We also have to consider offline dictionary attacks by inside 
malicious users. 

Online dictionary attacks are always possible but cannot become a serious threat if they can 
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be easily detected and thwarted by counting access failures. In the server-aided PAKE 
protocols, we more carefully consider online dictionary attacks because a malicious insider 
may indiscernibly launch such attacks by using the server as a password-verification oracle. If 
a failed guess cannot be detected and logged by the server, the attacks are called undetectable 
online dictionary attacks [1]. If undetectable online dictionary attacks succeed on a PAKE 
protocol, an adversary is able to find the correct passwords of users and hence is able to access 
everything that is permitted for honest users – which compromises the overall security of the 
key-exchange protocol. To prevent undetectable online attacks, a server-aided PAKE protocol 
must provide a method by which the server can distinguish an honest run of the protocol from 
a malicious one. The main security goal of PAKE schemes is to restrict adversaries so that they 
attempt only detectable online dictionary attacks. If a PAKE scheme is secure, an adversary 
cannot obtain any advantage in guessing passwords and the session-keys of users through 
offline dictionary attacks and undetectable online dictionary attacks. 

One of the most basic security requirements of a key-exchange protocol is key secrecy, 
which guarantees that no computationally-bounded adversary can learn anything about the 
session-keys that are shared between honest users by eavesdropping or sending messages of its 
choice to the users in the protocol. It is necessary that key secrecy also be preserved with 
regard to the server, which behaves honestly but in a curious manner. That is, the server should 
not learn anything about the session-keys of the users by eavesdropping. This is true even if 
the server helps two users establish a session-key between them. 

2. Our Work in Relation to Prior Works 
PAKE with different passwords in the three-party setting has been extensively studied in the 
last few years [2][3][4][5][6][7][8]. However, some of those schemes are not secure [2][7]. In 
[4], a protocol, C2C-PAKE, has been proposed without a formal proof. C2C-PAKE uses a 
block cipher to authenticate the protocol messages. In this method, a password is used as the 
encryption key of the block cipher. It is conjectured to be secure when the block cipher is 
instantiated via an “ideal cipher”. 

In [5], a formal model of security and a generic construction, GPAKE, of three-party PAKE 
with different passwords, have been proposed by Abdalla et al. GPAKE consists of three 
phases. In the first phase, a session-key is generated between the server and each of the two 
users by the use of a provably-secure, two-party PAKE in the standard model. In the second 
phase, a message authentication code (MAC) key is distributed by the server to each user by 
the use of a three-party key-distribution protocol. In the final phase, both users execute an 
authenticated, Diffie-Hellman key-exchange protocol by using the MAC key that is obtained 
in the previous phase. The security of GPAKE has been proved in the standard model (without 
a formal proof of forward secrecy). However, a concrete instantiation from GPAKE is not 
optimized from the viewpoint of the round-/computational complexities because the 
sub-protocols are treated as black boxes. For example, even the most efficient instantiation 
from GPAKE still requires six rounds and more than 17 modular exponentiations per user in 
the standard model. 

To improve the efficiency of the generic protocol, GPAKE, Abdalla et al. present a 
tailor-made protocol AP in [6]. However, they fail to improve the security of GPAKE since 
AP uses a full-domain hash function for message authentication, which is instantiated via an 
“ideal hash” function. The security of AP without forward secrecy has been proved in the ideal 
hash model under non-standard variants of the decisional Diffie-Hellman (DDH) assumption. 
A secure scheme in the ideal cipher/hash model may not be secure in the real world, if an 
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idealized function is instantiated with a real function [9][10][11][12][13]. From this point of 
view, it is more desirable to design provably secure and efficient three-party PAKE protocols 
in the standard model, which is the goal of this paper. 

Recently, in [8], Chung et al. show that the simple three-party password-based authenticated 
key exchange protocol using ideal hash functions, S-3PAKE [7], is not secure to an 
impersonation-of-initiator attack, an impersonation-of-responder attack, and a 
man-in-the-middle attack. They demonstrate its weaknesses by using informal description and 
formal description, respectively. To fix the three weaknesses, they suggest a countermeasure 
in [8]. 
 
Our Construction. For a small device that communicates over a mobile network, it is 
especially important to establish a session-key with a small amount of computation and 
communication and a small number of rounds. The extent of the communicational/ 
computational burden that is required by GPAKE may restrict the use of the PAKE protocol in 
mobile networks. In light of the complexities that concern communications/computations and 
rounds, we propose LPAKE, which is a light-weight, PAKE protocol with different passwords. 
LPAKE archives forward secrecy and security from known-key attacks in the standard model. 
In fact, LPAKE seems to be the first, provably-secure, three-party PAKE protocol in the 
standard model that satisfies the efficiency conditions. The light-weightiness of LPAKE is 
caused by no use of any expensive signature schemes or zero-knowledge proofs. 

In Table 1, we compare the efficiency and security of our protocol with the protocols that 
have been proven to be secure. The efficiency of an instantiation from GPAKE depends on the 
two-party PAKE protocol that is used and on the three-party key-distribution protocol. For a 
concrete instantiation of GPAKE, as presented in [5], we use the two-party PAKE protocol of 
[14] and the three-party key-distribution scheme of [15]. In fact, the inefficiency of the 
instantiation of GPAKE arises from the inefficiency of the underlying two-party PAKE 
protocol. There exist provably-secure, two-party PAKE protocols in the standard model, such 
as the protocols in [16][14][17]. However, all the existing two-party PAKE protocols in the 
standard model are not light enough for small mobile devices. The AP protocol outperforms 
LPAKE if we consider only efficiency aspects. However, LPAKE achieves the requirements 
of security and efficiency at the same time. 

  
Table 1. Comparison of provably-secure PAKE protocols with different passwords 

Scheme/ 
Resource 

Round Modular exp. Security †  Assumption † †  
User Server

GPAKE [2] 6 ≥ 17 ≥ 17 KK, KSS, UDOD DDH, CCS-E, CMS-M, 
EFS-S 

AP [4] 2 2 2 KK, KSS s-DDH, Ideal Hash 
LPAKE (our scheme) 3 4 6 FS, KK, KSS, UDOD DDH, CMS-M, PRF 

† An FS-secure protocol is a key-exchange protocol that provides forward secrecy. A KK-secure 
protocol is a protocol that is secure from known-key attacks. A KSS-secure protocol is a protocol that 
maintains key secrecy with regard to the curious server. A UDOD-secure protocol is a protocol that is 
secure from undetectable online dictionary attacks. 
† † s-DDH denotes a stronger variant of the DDH problem. CCS-E denotes a chosen-ciphertext-secure 
encryption. CMS-M denotes a MAC scheme that is secure from chosen message attacks. EFS-S denotes 
a signature scheme that is secure from existential forgery. PRF denotes a secure pseudorandom 
function. 
 

In Section 3, we define security models that are based on the existing security model for 
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PAKE with different passwords in the three-party setting. In Section 4, we present our 
light-weight protocol, LPAKE. In Section 5, we present a proof of the security of the proposed 
protocol. In Section 6, we provide an efficiency anlaysis. We conclude in Section 7 with a 
summary of our contribution.  

3. Security Model 
The security model defined in this section is based on Abdalla et al.’s model for three-party 
PAKE in [5], which follows the model that is established by Bellare et al. [18] that has been 
extensively used to analyze key-exchange protocols. The security of our protocol is proved in 
this model. 
 
Participants. We fix nonempty sets of potential users and potential servers; these are denoted 
by U and S, respectively. We assume that U contains two users and S contains a single server. 
We consider a PAKE protocol with different passwords in which two users in U want to 
exchange a session-key. The server, S∈S, helps the users with different passwords by which 
they share a common session-key. A participant, P , which is either a user or a server, may 
have many instances of the protocol. An instance of P  is represented by an oracle sP  for any 
s∈ .  
 
Passwords. Each user iU ∈U holds a password ipw  that is obtained at the start of the 
protocol through a password-generation algorithm, PG (1 )k , which upon the input of a security 
parameter, 1k , outputs a password ipw  that is uniformly distributed in a password-space 
Password of size, PW . We consider a symmetric model where the server, S , holds 

[ ]
iS i Upw pw ∈= U  for each user, iU .  

 
Partnered. Our definition of “partnered” follows that of [18], which uses a notion of a session 
identifier. Let the s-th instance of iU  be s

iU . A session identifier of s
iU , s

isid , is used to 
uniquely name the sessions and is defined as the concatenation of the protocol messages in the 
lexicographic order with respect to their owners. In this paper, we assume that the parties can 
simultaneously transmit messages. That is, we assume a duplex channel. We also assume that 
the users can be ordered by their names (e.g., lexicographically) and write i jU U< to denote 
this ordering. 

A partner identifier of s
iU , s

ipid , is an identity of the user with whom s
iU  intends to 

establish a session-key, s
iU

sk . The oracles, s
iU  and t

jU , are partnered if: (1) s t
i jsid sid= ; (2) 

s
i jpid U= ; and (3) t

j ipid U= .  
 
Game. There are three types of adversary: outside attackers; the curious server; and malicious 
users. An outside attacker tries to break the secrecy of the session-keys. The curious server [5] 
behaves honestly but tries to learn information about session-keys that are shared between 
honest users. A malicious user deviates from the protocol to perform an offline dictionary 
attack against the other user. 
 
Queries for Outside Attackers. Let A  be an adversary. A  controls all the communications 
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and queries the oracles. The queries that A  can ask are as follows. 
 
 ( , )sSend P M : This query sends a message, M , to an oracle, sP , and gets a response from 

sP . Using this query, A can conduct active attacks, such as modifying or inserting 
protocol-messages. The adversary can initiate a key-exchange protocol in the parties, U, 
and S , by asking the 0 ( , )Send SU  query. In response to 0 ( , )Send SU , each user, iU ∈U , 
and the server, S , send the first message of the protocol. 

 ( , , )s t u
i jExecute U S U : This query models passive attacks. In these attacks, the adversary 

procures the instances of honest executions of the protocol by the two users, s
iU  and u

jU , 

and the server, tS . (Although the actions of the Execute  query can be simulated via 
repeated Send  oracle queries, this particular query is needed to distinguish between 
passive and active attacks in the definition of forward secrecy.) 

 Re ( )s
iveal U : This query models the adversary’s ability to obtain session-keys, i.e., it 

models known-key attacks in the real system. If a session-key, s
iU

sk , has previously been 

constructed by s
iU , it is returned to the adversary. A PAKE protocol is said to be secure 

from known-key attacks if the compromise of multiple session-keys for sessions (other 
than the session for which secrecy must be guaranteed) does not affect the key secrecy of 
the protocol. This notion of security means that session-keys are computationally 
independent from each other. Security from known-key attacks also implies that an 
adversary cannot successfully perform offline dictionary attacks on the passwords from the 
compromised session-keys that are successfully established between honest parties. 

 ( )Corrupt P : This models the exposure of the long-term key that is held by P . That is, it 
models forward secrecy, which means that even with the long-term keys of the parties, no 
adversary can learn any information about previous session-keys that are successfully 
established between honest users without any interruption. The adversary is assumed to be 
able to obtain long-term keys of parties but cannot directly control the behavior of these 
players (of course, once the adversary has asked a query, ( )Corrupt P , the adversary may 
impersonate P  in subsequent Send queries.) We stipulate that on ( )Corrupt P , the 
adversary can get only the long-term key but cannot obtain any internal data of P . 

 ( )s
iTest U : This query is used to define the advantage of an adversary. It is allowed only 

once by an adversary A , and only to fresh oracles. A fresh oracle is defined below for 
describing the freshness for outside attackers. If the intended partner of s

iU  is part of the 
malicious set, the invalid symbol, ⊥ , is returned. Otherwise, a coin, b , is flipped. If b =1, 
the session-key, s

iU
sk , which is held by s

iU , is returned. If b =0, a string that is randomly 

drawn from a session-key distribution is returned. 
 
Freshness for Outside Attackers. For a Test query, we define the notion of freshness that 
considers forward secrecy. We say an oracle, s

iU , is fresh if the following conditions hold. 
(1) s

iU  has computed a session-key, s
iU

sk ≠NULL, and neither s
iU  nor t

jU  has been asked 

the Reveal query, if s
iU  and t

jU  are partnered. 

(2) No ( )jCorrupt U query has been asked by the adversary before any ( , )s
iSend U ∗ queries, 
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where s
i jpid U= . 

 
Now, we assume that A  is an outside attacker. A asks the oracles the above queries and 

receives the responses. At some point during the game, a Test query is asked of a fresh oracle 
(for the outside attackers) and the adversary may continue to submit other queries. Finally, the 
adversary outputs 'b  to guess the bit, b, which is used in the Test oracle, and terminates. We 
define CG to be an event such that A correctly guesses the bit, b. The advantage of the 
adversary, A, must be measured in terms of the security parameter, k, and is defined 
as , ( ) 2Pr[ ] 1outAtt

P AAdv k = −CG . The advantage function is defined as ( , )outAtt
PAdv k t =  

,max{ ( )}outAtt
P AA

Adv k  where A  is any adversary with a time-complexity, t, which is a polynomial 

in k. 
 
Definition 1. We say a protocol P is secure from outside attackers, if the following two 
properties are satisfied. 
 

- Validity: If all oracles in a session are partnered, the session-keys of all oracles are the 
same. 

- Key secrecy: ( )outAtt
PAdv k  is bounded by ( )seq k

PW
ε+ , where ( )kε  is a negligible function, 

seq  is the number of Send queries, and PW is the size of the password space. 
 
Queries for the Curious Server. We define an auxiliary query that is allowed to the curious 
server to capture the security condition, i.e., the server should not learn anything about the 
session-keys of the users, even if the server helps two users establish a session-key between 
themselves. In defining the query, we notice that a server knows the passwords for all users 
and behaves honestly but in a curious manner. For this reason, the curious server, A, is allowed 
to ask multiple queries of the Execute and ( , )s

iSend U M oracles but not of the 
( , ) tSend S M and Reveal oracles, since these oracles can be easily simulated through the 

passwords. To emulate the server’s advantage in learning information about a session-key that 
is shared between honest users, we define the additional oracle, TestPair, as follows. 
 
 ( , )s u

i jTestPair U U : This query is allowed only once by the server, and only when both 

oracles, s
iU  and u

jU , are fresh, which is defined below as the freshness for the curious 

server. If the user-instances, s
iU  and u

jU , do not share the same key, the invalid symbol, ⊥ , 
is returned. Otherwise, a coin b is flipped. If b=1, the session-key, sk , which is shared 
between s

iU  and u
jU , is returned; if b=0, a string that is randomly drawn from a session-key 

distribution is returned.  
 

At some point during the game, a TestPair query is asked to a fresh oracle for the curious 
server. As in the above definition, we define the advantage of the curious server, A, as 

, ( ) 2Pr[ ] 1curSvr
P AAdv k = −CG and the advantage function as ( , )curSvr

PAdv k t = ,max{ ( )}curSvr
P AA

Adv k . 

 
Freshness for the Curious Server. We say an oracle s

iU  is fresh if the following conditions 
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hold. 
(1) There exists an instance, t

jU , which is partnered with s
iU . 

(2) s
iU  has computed a session-key, s

iU
sk ≠NULL, and neither s

iU  nor t
jU  has been asked 

the Reveal query. 
 
Definition 2. We say a protocol, P, is secure from the curious server, if the following two 
properties are satisfied. 
 

- Validity: If all the oracles in a session are partnered, the session-keys of all the oracles are 
the same. 

- Key secrecy: ( , )curSvr
PAdv k t  is bounded by ( )kε , where ( )kε  is a negligible function. 

4. A Light-Weight PAKE Protocol in the Three-party Setting 

We now present our protocol LPAKE for 3-party PAKE. Let ,p q  be two primes such that p = 
2q+1, where p is a safe prime such that the decision Diffie-Hellman problem is hard to solve in 
G. A finite cyclic group G has order q. The terms, 1g  and 2g , are generators of G both having 
order q, where 1g  and 2g  must be generated so that their discrete logarithmic relation cannot 
be known. Let ( . , . )M Mac G MacV=  be a strongly unforgeable MAC algorithm. Let 

. ( )kMAC G mτ =  denote the MAC of message m  under key k . . ( , )kMacV m τ  outputs 1, if  
τ is a valid MAC for m  under key k . Otherwise, . ( , )kMacV m τ outputs 0. Let H be a hash 
function satisfying the collision-free property from {0,1}∗  to *

q . We note that H is not 
modeled as a random oracle but is just used for binding a user id and the password. Let F be a 
secure pseudorandom function family.  

An example of an execution of LPAKE is shown in Fig. 1. 
 
Initialization. Each user iU ∈U for {1,2}i∈ obtains ipw at the start of the protocol by using a 
password generation algorithm PG (1 )k . We assume that each user iU  and server S  have 
shared ( || || )

2 mod  i iH U S pw
iPW g p= , the public information, and the identity of users who want to 

exchange a session-key. 
 
Round 1. Each user iU  chooses a random number *

i qx ∈ , computes , 1 modix
i S iX g PW p= ⋅ , 

and sends ,( , )i i SU X   to the server S. For {1,2}i = , S chooses random numbers *
i qy ∈ , 

computes , 1 modiy
S i iX g PW p= ⋅ , and broadcasts ( ,S  ,1 ,2, )S SX X . 

 
Round 2. Upon receiving ( ,S ,1 ,2, )S SX X , each user iU computes , ,( / ) modix

i S S i ik X PW p=  
and 

,, , ,. ( || || || )
i Si S k i i S S iMac G U S X Xτ =  and sends ,( , )i i SU τ to S. 

 
Round 3. Upon receiving ,( , )i i SU τ , for {1,2}i = , S computes 

, ,. ( )
S ik i SMacV τ  where 

, ,( / ) modiy
S i i S ik X PW p=   . S halts if at least one of 

, ,. ( )
S ik i SMacV τ returns 0. Otherwise, 
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proceed to the next process. For {1,2}i = , S selects a random number *
qs∈ , computes 

1
, 1( )ix s

S iY g +=  and 
,, 1 ,. ( || || )

S iS i k i i S iMac G U U Yτ += , and sends , ,( || || )S i S iS Y τ to each user iU . 

 
Key computation. Upon receiving , ,( || || )S i S iS Y τ , each user iU  computes 

, ,. ( )
i Sk S iMacV τ . 

Each user iU  halts if 
, ,. ( )

i Sk S iMacV τ returns 0. Otherwise, each user iU  computes ,( ) ix
i S iK Y=  

mod p  and the session-key 1 2( || || )
ii Ksk F U S U= , where 1 2U U< . 

 
Fig. 1. An example of an execution of LPAKE 

 
Completeness. In an honest execution of the protocol, both users 1U  and 2U  calculate an 
identical session-key as 1 2( || || )Ksk F U S U= , where 1 2

1
x x sK g= . 
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5. Security Analysis 
Security from Outside Attackers. The following theorem says that LPAKE is secure from 
outside attackers, since any adversary can test only one guessed password through a run of 
LPAKE. That is, the adversary can engage in only detectable online dictionary attacks. 
 
Theorem 1. Let G be a group in which the DDH assumption holds. Let F be a family of secure 
pseudorandom functions and M be an unforgeable MAC algorithm. Then, LPAKE is a secure 
protocol. More precisely,  
 

2

( , , , , ) (2 12 ) ( ) 4 ( , ) 2 ( , , , )

2( ) 2( ) ,

outAtt U S ddh suf U prf
LPAKE ex se se ex s G M se F

U S S
se se ex se

Adv k t q q q q N Adv t Adv k q Adv k T q h

q q q q
PW q

≤ + + +

+ +
+ +

 

 
where t is the maximum total game time, including an adversary’s running time. An adversary 
makes exq  Execute queries. U

seq  and S
seq  are the numbers of the ( , )S

iSend U M  and 
( , )tSend S M  queries, respectively. sN  is the upper bound on the number of sessions that an 

adversary makes. PW is the size of the password space.   
 
Proof of Theorem 1. All parameter choices depend on a security parameter k. Let ( )ddh

GAdv t  
denote the maximum advantage which is over all adversaries As that solve the DDH problem 
running in time at most t. Let ( )suf

MAdv k  denote the maximum advantage which is over all 
adversaries As that break the strong unforgeability of M running in time t and making at most q 
queries to its M oracle. Let ( , , , )prf

FAdv k T q h  denote the maximum advantage which is over all 
adversaries As that break the pseudorandomness of F with time complexity T making at most q 
oracle queries and the sum of the length of these queries being at most h bits. 

Consider an adversary A that is attacking LPAKE in the sense of forward secrecy and 
security from known-key attacks. In this proof, we prove that the best strategy the adversary 
can take is to verify a guessed password in the password dictionary through a run. Assume that 
A breaks LPAKE with a non-negligible probability. The advantage of A can arise from the 
following two cases. 
 

(Case 1) For the Test oracle, S
iU , there exists t

jU , which is partnered with S
iU . 

(Case 2) For the Test oracle, S
iU , there exists no instance of jU , which is partnered with S

iU , 

where s
i jpid U= . 

 
For {1,2}i = , let ( , , , , )outAtt Casei U S

LPAKE ex se seAdv k t q q q−  be the advantage of an adversary from Case i. 
Then we have 

 
1 2( , , , , ) ( , , , ) ( , , , , )outAtt U S outAtt Case S outAtt Case U S

LPAKE ex se se LPAKE ex se LPAKE ex se seAdv k t q q q Adv k t q q Adv k t q q q− −= + . 
 

Case 1 measures the forward secrecy of LPAKE. This means that even with the long-term 
keys of parties, no adversary can learn any information about session-keys that are 
successfully established between honest parties without any interruption. Consider the 
advantage from Case 1. 
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Claim 1. 
2

1 2( )( , , , ) 2 ( ) .
S

outAtt Case S ddh ex se
LPAKE ex se ex G

q qAdv k t q q q Adv t
q

− +
≤ +  

Proof of Claim 1. If the advantage of an adversary is from Case 1, the passwords of the parties 
may be revealed through Corrupt queries. Although Corrupt queries are allowed for the Test 
oracle, S

iU , all instances in S
ipid  are executed by Execute queries by the definition of the 

freshness (for outside attackers). This case may be viewed as one in which there are no 
passwords in the protocol. Thus, we may ignore Corrupt queries.  

A user may get information about the session-key of a particular session that the user did not 
participate in, if a random number that is used by the user to generate a message X is also used 
by other users in other sessions. The other case allows us to solve the DDH problem. The 
advantage from Case 1 is: 

1 1 1( , , , ) ( , , , ) ( , , ).outAtt Case S outAtt Case Col S outAtt Case Col
LPAKE ex se LPAKE ex se LPAKE exAdv k t q q Adv k t q q Adv k t q− − − − −≤ +  

Let Col be the event that there exists a user, iU , in session s such that the random number, 

ix , which is used by the user, iU , is equal to the random number, jx , which is used by the 
user,  in session 's . The probability that this event occurs, Pr[Col], is bounded by the birthday 

paradox as 
2( )S

ex seq q
q
+ . This immediately implies that  

2
1 2( )( , , , ) 2Pr[CG Col] 1 2Pr[Col] ,

S
outAtt Case Col S ex se
LPAKE ex se

q qAdv k t q q
q

− − +
= ∧ − ≤ ≤           (1) 

where q is the size of the group, G. 
 

We consider the advantage in the case without the event, Col. We assume an adversary, A, 
which is making only a single 1 2( , , )s t uExecute U S U query (notice that this is sufficient for 
supporting Theorem 1). The users, 1U  and 2U , are chosen by A. The distribution of the 
transcript, T, and the resulting session-key, sk, of LPAKE are given by: 

 
1 2 1 2 1 2
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Consider the following randomized distribution: 

1 2 1 2 1 2

1 1 2 2
1 1 2 2

1 1

2 1
1 1 2 2

1 1

1 2 1 2 1 1 1 1 1 1
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A standard argument shows that for any probabilistic polynomial-time (ppt) algorithm A 
that is running in time t, 

 
| Pr[( , ) Real : ( , ) 1] Pr[( , ) Fake : ( , ) 1] | ( ).ddh

GT sk A T sk T sk A T sk Adv t← = − ← = ≤  
 

This is true since the value of k in Fake is independent from the values 1 2 2 1
1 1 1 1( , ; , )x x s x x sg g g g in 

T, and thus, from the value of sk. This implies that for any A, 
 

0 1| Pr[( , ) Fake; {0,1} : ( , ) ] 1/ 2,k
R bT sk sk A T sk b← ← = =  

 
which leads to 1 ( , ,1) 2 ( )outAtt Case Col ddh

LPAKE GAdv k t Adv t− − ≤ . We note that this immediately yields – via 
a standard hybrid argument – that 
 

1 ( , , ) 2 ( )outAtt Case Col ddh
LPAKE ex ex GAdv k t q q Adv t− − ≤ .                                    (2) 

 
Equations (1) and (2) yield the desired result. 
 

Claim 2. 2 ( , , , , ) 12 ( ) 4 ( , ) 2 ( , , , )outAtt Case U S ddh suf S prf
LPAKE ex se se s G M se FAdv k t q q q N Adv t Adv k q Adv k T q h− ≤ + +  

2( ) .
U S
se seq q
PW
+

+  

 
Proof of Claim 2. To compute the upper bound on the advantage from Case 2, we assume that 
an adversary, A, gets the advantage from Case 2. Informally, there are only two ways by which 
an adversary can get information about a particular session-key: either the adversary  
successfully breaks the authentication part, which means that the adversary correctly guesses 
the passwords, or the adversary correctly guesses the bit, b, which is involved in the Test query. 
To evaluate this advantage, we incrementally define a sequence of hybrid experiments 
wherein there are some modifications per experiment; the sequence starts at the real 
experiment, 0Exp , and ends up at 4Exp . We simulate the experiments and then consider the 
adversary’s attack on the simulated protocol. We denote the probability that an event E occurs 
in iExp  as Pr [ ]i E . 
 
Experiment 0Exp . This is the real attack. The server and each user are given ipw  for iU ∈U . 
In this experiment, all the oracles in the game, which define the advantage of an adversary as 
in Section 3, are allowed to the adversary. The instances of the parties respectively answer 
each Send query with independent random exponents. The Execute query proceeds similarly. 
Thus, the instances can easily answer to the Reveal, Corrupt, and Test queries. By definition,  

 
                         0Pr [CG] ( ( , , , , ) 1) / 2outAtt U S

LPAKE ex se seAdv k t q q q= + .                                    (3) 
 

Experiment 1Exp : We define the event, AskSend-WithPW, as the event that a flow m is 
generated by an adversary under pw and a query ( , )sSend P m is asked by the adversary. In this 
experiment, we delete the executions wherein the event, AskSend-WithPW, occurs. In these 
executions, we stop choosing b′  at random. 
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0 1 1| Pr [CG]-Pr [CG] | Pr [AskSend-WithPW].≤  
 

Experiment 2Exp : In this experiment, we replace each MAC key that is used in the protocol 
with a random key. We can use a standard hybrid argument because the MAC keys are all 
independent. We show that the difference between the probabilities of success of an adversary 
in the previous and current experiments is negligible, if the DDH assumption holds and as long 
as the event, AskSend-WithPW, does not occur. Formally, 
 

1 2| Pr [CG]-Pr [CG] | 2 ( ).ddh
s GN Adv t≤  

 
The concrete description of this experiment is as follows. 
 

1. Select the passwords for all users in U by executing PG (1 )k . Let U = 1 2{ , }U U . Compute 

1PW  and 2PW  by using the selected passwords. 
2. Select a user, iU , from U and a random number, ,i Sw . Use ,i Sw  as the MAC key, 

, ,( )i S S ik k , instead of 1
i ix yg . 

3. Use 1 1
1

j jx yg + +  as the MAC key, 1, , 1( )j S S jk k+ + , where j = i mod 2. 

4. Compute the session-key as in 1Exp . 
5. For all oracle queries of an adversary, answer them as in 1Exp , under the above 

restriction. 
 
We construct a distinguisher, D, which solves the DDH problem by using the difference in 

the advantage of an adversary, A, between 1Exp  and 2Exp . D is given an instance of the 
DDH problem, 1( , , , )g U V W , for which the base is 1g . D uses the instance by the random 
self-reducibility of the DDH problem. D perfectly simulates either 1Exp  or 2Exp  depending 
on whether or not 1( , , , )g U V W  is a DDH triple. That is, if 1( , , , )g U V W  is a DDH triple, D 
simulates 1Exp ; otherwise, D simulates 2Exp . We assume that A makes only a single Execute 
query and a single Send query. Let ( , )s

rSend P M  be the rth round’s Send query in the case of 
the instance, sP . The concrete description of D is: 

 
1( , , , )D g U V W  

 
1. Select the passwords for U = 1 2{ , }U U  by executing PG (1 )k  and compute 1PW  and 2PW  

by using the selected passwords.  
2. Select 'i  from U and give A the passwords for all malicious users in U.  
3. For u

1 2( , , )s tExecute U S U  and 0 ( ,  )Send SU , randomly select 1 2, ,s sσ , and compute 
1

1 = sU gσ ⋅U  and 2
1 = sV g⋅V . Compute 1, 1SX PW= ⋅U  and ,1 1SX PW= ⋅V , and ,2SX  and 

2,SX as in 1Exp . 
4. For u

1 2( , , )s tExecute U S U , 1 ,( , )s
i S iSend U X  and 1 ,( , )t

i SSend S X : 
- If ,S iX  or ,i SX  has been computed by D and i i′ = , then compute 
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2 1 1 2
1 = s s s sW U V gσσ ⋅ ⋅ ⋅W  and use W as the MAC key ', , '( )i S S iτ τ , and if i i′ ≠ , then 

compute the MAC key , ,( )i S S iτ τ  as in 1Exp . 
- If ,S iX  or ,i SX  has not been previously computed by D, then proceed as in 1Exp . 

5. Compute the session-key as in 1Exp . 
6. For ( )s

iTest U , s
iU  is fresh, return sk without coin flipping. 

7. For all oracle queries of A, answer them following the protocol under the above 
restriction. 

8. If A terminates with 'b , returns 'b  and halts. 
 
Consider the case that either ,S iX  or ,i SX  of 1 ,( , )s

i S iSend U X  and 1 ,( , )t
i SSend S X  has not 

been previously computed by D. Even though the user-instance that is involved in the queries 
accepts itself, its partner may not be an oracle-instance. Thus, a Test query that involves the 
instance may always return the invalid symbol, ⊥ . Therefore the advantage of D, by 
combining the probability that D correctly guesses i′ , is: 
 

, 1 1 1 1 1 1

1 1 1 1 1 1

1 2

| Pr[ , ; ( , , , ) ( , , , ) : ( , , , ) 1]

Pr[ , , ; ( , , , ) ( , , , ) : ( , , , ) 1] |

1 |Pr [CG]-Pr [CG]|,
2

ddh u v uv
G D R q

u v w
R q

Adv u v g U V W g g g g D g U V W

u v w g U V W g g g g D g U V W

∗

∗

= ← ← = −

← ← =

=

 

 
which – in conjunction with the fact that A makes at most Ns sessions – leads (via a standard 
hybrid argument) to: 

1 2| Pr [CG]-Pr [CG] | 2 ( ).ddh
s GN Adv t≤                                       (4) 

 
The security from offline dictionary attacks and undetectable online dictionary attacks is 

measured by the probability that AskSend-WithPW occurs. In experiment 2Exp , we have 
changed the computation of the MAC keys. We have replaced each MAC key with a random 
key by using standard hybrid arguments. After this modification, the probability that the 
adversary will see the difference between the previous and current experiments is to solve the 
DDH problem. We have: 
 

1 2| Pr [AskSend-WithPW] Pr [AskSend-WithPW] | 2 ( ).ddh
s GN Adv t− ≤               (5) 

 
Experiment 3Exp : Let Forge be the event that an adversary, A, against key-privacy outputs a 
new, valid message-tag pair in Round 3, where the message was not previously sent by the 
server. In other words, A is sending a message it has built by itself, after having seen at most 

U
seq  valid message-tag pairs. We note that although A forges a MAC tag in Round 2, the forged 

MAC is not helpful for A in breaking the key-privacy as long as it does not solve the DDH 
problem and AskSend-WithPW has not occurred. So, we only consider forger A, who forges a 
MAC tag in Round 3 (the MAC tags in Round 2 are used to detect online dictionary attacks). 
We construct 'M , which breaks the MAC algorithm, M , by using A. 'M  is given a 
MAC-generation oracle . ( )Mac G ⋅  and a MAC-verification oracle . ( )MacV ⋅ . The concrete 
description of 'M  is: 
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. ( ), . ( )Mac G Mac VM ⋅ ⋅′  
 

1. Select the passwords for all users in U by executing PG (1 )k . 
2. Give A the passwords for all malicious users in U. 
3. Select i from U and use MAC oracles to generate and verify MAC values for user iU  

from S. 
4. For all oracle queries of A, answer as in 2Exp  under the above restriction. 
5. If a forged message-tag pair , ,( , )S i S iY τ  for iU  is found during simulation such that 

, ,. ( , ) 1S i S iMacV Y τ = , output , ,( , )S i S iY τ  and halt. 
 
The probability of success of 'M  depends on whether or not A makes a forged massage-tag 

pair and 'M  correctly guesses i. If these guesses are correct, the simulation is perfect. In this 
experiment, the probability that AskSend-WithPW occurs is the same as that in the previous 
experiment, 2Exp . So, this immediately implies: 

 
2 3| Pr [CG] Pr [CG] | Pr[Forge] 2 ( , ),suf U

M seAdv k q− ≤ ≤  
2 3Pr [AskSend-WithPW] Pr [AskSend-WithPW].=                          (6) 

 
Experiment 4Exp : In this experiment, we replace the family, F, of pseudorandom functions 
that is used to derive a session-key with a random function. That is, in 3Exp , a session-key is 
computed by using a family, F, of pseudorandom functions; here, a session-key is computed 
by using a random function, g. We show that if F is a family of secure pseudorandom functions, 
the difference in the probability of success of an adversary between the previous and current 
experiments is negligible. Formally, 
 

( ) ( )

3 4

( , , , )

| Pr[ ( ) :  1] - Pr[  :  1] |
| Pr [CG]-Pr [CG] | .

K

prf
F

F D R g
R R

Adv k T q h

K Keys F D g Rand D⋅ → ⋅= ← = ← =
=

 

 
Consider a distinguisher, D, for breaking the pseudorandomness of a family, F, of 

pseudorandom functions that uses the difference in the advantage of an adversary, A, between 
2Exp  and 3Exp . D is given an oracle-function, ( )f ⋅ , in the experiment into the 

pseudorandomness of the family, F, of functions. D simulates either 2Exp  or 3Exp  
depending on whether or not ( )f ⋅  is a function from F. The concrete description of D is: 

 
( )fD ⋅  

 
1. For all oracle queries of A, D answers them  as in 3Exp  by using an oracle function ( )f ⋅  

instead of F to make a session-key. 
2. If A terminates with 'b , D  returns 'b  and halts. 
 

The advantage of D for breaking a pseudorandom-function family (with a probability that is 
related to A’s probability of success) is that 
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3 4| Pr [CG]-Pr [CG] | ( , , , ),prf
FAdv k T q h=  

3 4Pr [AskSend-WithPW] Pr [AskSend-WithPW].=                          (7) 
 

Note that in this experiment, the probability that AskSend-WithPW occurs is the same as 
that in the previous experiment, 3Exp .  

In 4Exp , the answers to the Test queries are purely random. That is, the bit, b, which is used 
by the Test oracle cannot be guessed by the adversary better than by random. 

 

4
1Pr [CG] |
2

= .                                                            (8) 

 
Experiment ∗4

Exp : To measure 1Pr [AskSend-WithPW] , we define an auxiliary that is 

similar to 4Exp . In this experiment, the view of the adversary is perfectly independent from 
the passwords of the users. The difference between the experiments is in the way the Execute 
and Send queries are answered. In this experiment, on 0 ( ,  )Send SU , the set, U, and S 
randomly choose iX  and iY  from G, and respectively send them. Notice that in 4Exp , iU  
and S respectively compute 1 mod  ix

i iX g PW p= ⋅  and 1 mod  iy
i iY g PW p= ⋅  before sending 

them. For any adversary, we have via a standard hybrid argument, 
 

4 4
| Pr [AskSend-WithPW] Pr [AskSend-WithPW] | 2 ( ).ddh

s GN Adv t∗− ≤                 (9) 
 

From an information-theoretical viewpoint, in this execution, the adversary cannot get 
information on the passwords with instances of the protocol in an offline manner, since the 
transcripts are indistinguishable from a random transcript in G. Thus, the transcripts are 
completely independent from the passwords. We remark that the passwords cannot be 
correctly guessed by the adversary better than by sending a message that is generated under a 
guessed password. That is, 

 
4Pr [AskSend-WithPW] ( ) / .U S

se seq q PW= +                                   (10) 
 

From Equations (3)-(10), the advantage from Case 2 is bounded as follows. 
 

2 2( )( , , , , ) 12 ( ) 4 ( , ) 2 ( , , , ) .
U S

outAtt Case U S ddh suf S prf se se
LPAKE ex se se s G M se F

q qAdv k t q q q N Adv t Adv k q Adv k T q h
PW

− +
≤ + + +

 
Finally, from Claim 1 and Claim 2, Theorem 1 follows. 

 
1 2

2

( , , , , ) ( , , , ) ( , , , , )

(2 12 ) ( ) 4 ( , ) 2 ( , , , )

2( ) 2( ) .

outAtt U S outAtt Case S outAtt Case U S
LPAKE ex se se LPAKE ex se LPAKE ex se se

ddh suf U prf
ex s G M se F

U S S
se se ex se

Adv k t q q q Adv k t q q Adv k t q q q

q N Adv t Adv k q Adv k T q h

q q q q
PW q

− −= +

≤ + + +

+ +
+ +
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Security from the Curious Server. The following theorem says that LPAKE is secure from the 
curious server. That is, the server cannot know the session-keys between the users, even 
though the server knows the passwords of the users. 
 
Theorem 2. Let G be a group in which the DDH assumption holds. Let F be a family of secure 
pseudorandom functions. Then, LPAKE is secure from the curious server. More precisely, 
 

( , , , ) 2 ( ) 2 ( , , , ),curSvr U ddh prf
LPAKE ex se s G FAdv k t q q N Adv t Adv k T q h≤ +  

 
where t is the maximum total game time, including an adversary’s running time. sN  is the 
upper bound on the number of sessions that an adversary makes. 
 
Proof of Theorem 2. This theorem shows that LPAKE provides key-secrecy with respect to the 
server, if the DDH assumption holds in G and if F is a family of secure pseudorandom 
functions. Assume that the curious server, S, breaks key-privacy with a non-negligible 
probability. To measure the advantage of S, we define two experiments, 0Exp  and 1Exp . 

0Exp  is the real attack in which the server and each user are given ipw  for all iU ∈U . S can 
access the Execute, ( , )s

iSend U M , and Test oracles. Since the instances for the server know 
the passwords, they can easily answer to the queries in 0Exp . By definition, 
 

0Pr [CG] ( ( , , , ) 1) / 2.curSvr U
LPAKE ex seAdv k t q q= +                                  (11) 

 
Experiment 1Exp : In this experiment, we replace the session-key with a random value from 
the session-key space. 

We construct a distinguisher, D, which solves the DDH problem by using the difference in 
the advantage of the adversary, S, between 0Exp  and 1Exp . D is given 1( , , , )g U V W , which 
is an instance of the DDH problem for which the base is 1g . D uses the instance by the random 
self-reducibility of the DDH problem. D perfectly simulates either 0Exp  or 1Exp  depending 
on whether or not 1( , , , )g U V W  is a DDH triple. That is, if 1( , , , )g U V W  is a DDH triple, D 
simulates 0Exp ; otherwise, it simulates 1Exp . We assume that S is making only a single 
Execute query and a single ( , )tSend S M  query. The simulation of the Execute query is the 
same as that in Claim 1 of Theorem 1. The concrete description of D is: 

 
1( , , , )D g U V W  

 
1. Select the passwords for U = 1 2{ , }U U  by executing PG (1 )k  and compute 1PW  and 2PW  

by using the selected passwords.  
2. Give S the passwords for all users in U. 
3. For 0 ( ,  )Send SU , randomly select  1 2, ,s sσ , and compute 1

1 = sU gσ ⋅U  and 2
1 = sV g⋅V . 

Compute 1, 1SX PW= ⋅U  and 2, 1SX PW= ⋅V , and ,1SX  and ,2SX as in 0Exp . 

4. For 3 ,( , )s
i S iSend U Y : 

- If ,S iY  has been computed by D, then compute 2 1 1 2
1 = s s s sW U V gσσ ⋅ ⋅ ⋅W . Select a 
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random number γ  from q
∗  and use  ( )γW  as the session-key. 

- If ,S iY  has not been previously computed by D, then proceed as in 0Exp . 
5. For 1 2( , )s uTestPair U U , check 1

sU  and 2
uU  have the same key. If this check fails, return 

the invalid symbol, ⊥ . If this check passes and if 1
sU  is fresh, return sk without coin 

flipping. 
6. For all oracle queries of S, answer them following the protocol under the above 

restriction. 
7. If S terminates with 'b , D returns 'b  and halts. 
 
Consider the case that ,S iY  of 3 ,( , )s

i S iSend U Y has not been previously computed by D. Even 
though the user-instance that is involved in the queries accepts itself, a TestPair query that 
involves the instance may always return the invalid symbol, ⊥ . Therefore, the advantage of D 
is: 

 
, 1 1 1 1 1 1

1 1 1 1 1 1

0 1

| Pr[ , ; ( , , , ) ( , , , ) : ( , , , ) 1]

Pr[ , , ; ( , , , ) ( , , , ) : ( , , , ) 1] |

|Pr [CG] - Pr [CG]|,

ddh u v uv
G D R q

u v w
R q

Adv u v g U V W g g g g D g U V W

u v w g U V W g g g g D g U V W

∗

∗

= ← ← = −

← ← =

=

 

 
which – in conjunction with the fact that S makes at most sN  sessions – leads (via a standard 
hybrid argument) to 

0 1|Pr [CG] - Pr [CG]|  ( )ddh
s GN Adv t≤ .                                        (12) 

 
Experiment 2Exp : We replace the family, F, of pseudorandom functions that is used to 
derive a session-key with a random function. 

The proof of the probability for the advantage of seeing the difference between the current 
and previous experiments follows the same path as the proof of Equation (7) in Claim 2. The 
probability that S correctly guesses the bit, b, which is involved in the TestPair oracle, is ½, as 
in the proof of Equation (8) in Claim 2. 
 

1 2|Pr [CG] - Pr [CG]| = ( , , , )prf
FAdv k T q h , 

2
1Pr [CG] = .
2

                                                        (13) 

 
From Equations (11)-(13), Theorem 2 follows.                                                                     

6. Efficiency Analysis 

Because modular exponentiation is the computationally expensive operation in many 
cryptographic protocols, we compare the number of modular exponentiations that each user 
and the server compute. A moular exponentiation in p

∗  corresponds a multiplication in an 
elliptic curve group. With a 160-bit modulus, an elliptic curve system offers the same level of 
cryptographic security as DSA or RSA with 1024-bit moduli. The smaller key sizes result in 
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smaller system parameters, smaller public-key certificates, bandwidth savings, faster 
implementations, lower power requirements, and smaller hardware processors [17]. From this 
point of view, elliptic curves have been used in the area of mobile and wireless communication 
networks.  
 

Table 2. Times for elliptic curve point multiplication 

Phone/ECC key size 160 bits 192 bits 224 bits 

Nokia 6600 (104 MHz CPU) 81 ms 118 ms 160 ms 
Nokia 6670 (123 MHz CPU) 68 ms 98 ms 137 ms 

 
Table 2 shows, for various values of ECC key size, the times required to compute a single 

elliptic curve point multiplication, that is the calculation of r P⋅ , where r is chosen at random 
and P is a point of order p. This table is the output of a benchmark by Wong, on two Nokia 
camera phones, compiled with the development environment of Symbian’s Series 60 
Developer Platform 2.0 SDK [29]. Wang ported the relevant C routines from the Shamus 
MIRACL [28] cryptographic library to the Symbian OS 7.0s used in several Nokia camera 
phones. Table 3 shows, for various values of ECC key size, the times in milliseconds required 
to compute elliptic curve point multiplication on the PAKE protocols in Table 1. 

 
Table 3. Times for elliptic curve point multiplication on 123 MHz Nokia 6670 

Size of ECC 
key size 

GPAKE [2] AP [4] LPAKE (our scheme)
User Server User Server User Server 

160 bits ≥ 1377ms ≥ 1377ms 162 ms 162 ms 324 ms 486 ms 
192 bits ≥ 2006 ms ≥ 2006 ms 236 ms 236 ms 472 ms 708 ms 
224 bits ≥ 2720 ms ≥ 2720 ms 320 ms 320 ms 640 ms 960 ms 

7. Conclusion 
In this paper, we have proposed a practical PAKE protocol in the three-party setting, which is 
secure from undetectable online and offline dictionary attacks without random oracles. Our 
protocol requires only three rounds and four modular exponentiations per user. Furthermore, 
our protocol provides forward secrecy, key secrecy from curious servers, and security from 
known-key attacks. 
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