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We review a series of studies on turbulent skin friction drag reduction in wall-turbulence recently 
conducted in Japan. First, an identity equation relating the skin friction drag and the Reynolds shearstress 
(the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal 
feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical 
simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an 
anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.
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1. INTRODUCTION

Control of turbulent flows and associated transport 
phenomena is a key in many engineering practices its 
impacts on future technology and human life would be 
enormous[1]. In fiscal years of 2000-2004, a joint research 
project on turbulence control (Project for Organized 
Research Combination System by the Ministry of 
Education, Culture, Sports and Technology of Japan) was 
conducted in Japan. The project consisted of three 
different topics, i.e., feedback control using 
microelectromechanical systems (MEMS), turbulent drag 
reduction using functionalized fluids, and control of 
combustion, and extensive achievement has been made. In 
the field of feedback control using MEMS, in addition to 
the achievement in the theory introduced below, we were 
able to develop a control system prototype as shown in 
Fig. 1, and achieved 6% drag reduction in a wind-tunnel 
experiment[2].

In the present paper, we overview some of the 
theoretical achievements in the field of turbulent skin 
friction reduction made in the above-mentioned project. 
Also we introduce some related continuation work. The 

paper is organized as follows. In Section 2, we introduce 
some mathematical relationships concerning the skin 
friction reduction control. In Section 3, we introduce an 
attempt to develop a feedback control law based on the 
implication of that mathematical relationship. In Section 4, 
the same idea is applied to a passive control.

2. MATHEMATICAL RELATIONSHIPS CONCERNING 
SKIN FRICTION REDUCTION CONTROL

2.1 THE FIK IDENTITY
In wall turbulence, quasi-streamwise vortices (QSVs) are 

known to play a dominant role in near-wall turbulent 
transport phenomena[3-5] through their regeneration 
mechanism[6]. Through an analysis of direct numerical 
simulation (DNS) data, Kravchenko et al.[7] clearly 
illustrated the strong correlation between the streamwise 
vorticity accompanied by QSV and the immediate 
upstream wall shear stress. Moreover, QSV dominates the 
production, destruction, and diffusion of the Reynolds 
shear stress (RSS) responsible for turbulent friction 
drag[3].

Although it had been known that QSV is responsible 
for large friction drag in wall turbulence, the quantitative 
relationship between the turbulent structure and the 
resultant value of skin friction had not been unknown for 
a long time: the simple mathematical relationship between 
the skin friction coefficient and RSS (hereafter referred to 



Fig. 1 Feedback control system for wall turbulence with 192 
MEMS wall-shear-stress sensors and 48 magnetic 
shell-deformation actuators developed by Yoshino et al. 
[2]

Fig. 2 Flow geometry

as the FIK identity) has been derived only recently by 
Fukagata et al.[8]. In the followings, we briefly review the 
derivation process of the FIK identity and its implication.

Here, only the simplest case, i.e., a steady, 
fully-developed, isothermal, incompressible turbulent flow 
of a Newtonian fluid in a plane channel, as shown in Fig. 
2, is considered. The Reynolds averaged Navier-Stokes 
equation in the streamwise () direction is given by
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where the overbar denotes the average. In this section, all 
variables without superscript are those nondimensionalized 
by the channel half width, , and twice the bulk mean 
velocity, , whereas dimensional variables are denoted 
by the superscript of . The bulk Reynolds number is 
defined as   , where  is the kinematic 
viscosity. The pressure in Eq. (1) is normalized by the 
density. 

The flow rate is assumed to be always constant. The 
velocities on the walls are no-slip, but wall-transpiration is 
allowed given the net flux is zero. This enables the use 
of the FIK identity to, for instance, a flow controlled by 
blowing/suction with zero net flux, which is widely used 
in numerical studies of active feedback control.

Under the conditions above, integration of Eq. (1) over 
y gives the relation between the pressure gradient and the 
skin friction coefficient,
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The relation for componential contributions of different 
dynamical effects to the local skin friction coefficient can 
be obtained by applying triple integration to Eq. (1). The 
first integration gives the well-known linear relation for 
stresses, which is readily derived from Eqs. (1) and (2) as  
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The further integration leads to the mean velocity profile, 
which reads
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The final integration is akin to obtaining the flow rate 
from the velocity profile, i.e.,
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where the relation of the dimensionless bulk mean 
velocity,   , was used. The double integration in 
Eq. (5) can be transformed to single integration by 
applying the integration by parts, viz.,
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Thus, Eq. (5) can be rewritten as
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This identity equation for a fully-developed channel 
flow indicates that the skin friction coefficient is 
decomposed into the laminar contribution, , which 
is identical to the well-known laminar solution, and the 
turbulent contribution (the second integral term), which is 
proportional to the weighted average of Reynolds stress. 
The weight linearly decreases with the distance from the 
wall. 

A similar relationship can be derived also for other 
canonical flows. The FIK identity for a fully-developed 
cylindrical pipe flow is expressed as
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where the length is nondimensionalized by the pipe radius. 
The wall and the cylindrical axis are located at   and 
 , respectively. 

Note that similar identity equation has been presented 
also by Bewley and Aam [9]. Although they presume a 
laminar base flow in the channel, the final expression is 
essentially similar to the FIK identity. It is also worth 
noting that Sbragaglia and Sugiyama[10] extended the FIK 
identity to general shaped ducts. Their formulation is 
based on the constant pressure gradient condition instead 
of constant flow rate, and the resultant expression reads,

〈〉〈〉〈∇〉 (9)

where the bracket denotes the bulk-average and the tilde 
indicate the velocity in the Stokes flow under the same 
pressure gradient.

The FIK identity can be derived for a spatially 
developing flow. For a zero-pressure-gradient boundary 
layer on a flat plate it reads
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where the nondimensionalization is based on the 
free-stream velocity and the 99% boundary layer thickness. 

The third term is the contribution from the spatial 
development, while  in the first term is the 
dimensionless displacement thickness. For a laminar plane 
boundary layer, the first contribution is 
 ≈  and the third contribution can be 
computed as   by using the similar solution of 
Howarth[11]. The summation of these contributions is 
identical to the well-known relation, i.e., ≈ .

A more general form of the FIK identity including 
different dynamical effects (e.g., for channel flows) can be 
expressed as
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The third term is the contribution from the spatial and 
temporal development, which reads
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where the double-prime denotes the deviation of mean 
quantity from the bulk mean quantity, i.e., 
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The fourth term is the contribution from a body force,  , 
and additional stress, 

 , such as that by 
polymer/surfactant[12-14], which can be expressed as 
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The fifth term is the contribution from the boundary 
momentum flux, such as uniform blowing/suction, which 
reads
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where   denotes the wall-normal velocity at the walls. 
In this case, the integration of the other terms should also 
be made from 0 to 2, because the flow is not anymore 
symmetric around the center plane.



Fig. 4 Cumulative contribution to skin friction in pipe flow at 
   under opposition control[8]

Fig. 3 Reynolds shear stress and weighted Reynolds shear stress in 
pipe flow at    under opposition control[8]

2.2 ANALYSIS USING THE FIK IDENTITY
The merit of the FIK identity derived above is that one 

can quantitatively identify each dynamical contribution to 
the drag reduction/increase even for a manipulated flow.

The first example is a fully developed turbulent pipe 
flow manipulated by Choi et al.'s opposition control 
scheme[15]. Namely, time-dependent, continuous 
blowing/suction velocity is applied as the boundary 
condition at the wall, so as to oppose the wall-normal 
velocity at the detection plane assumed at   . The 
data were obtained by DNS using the energy-conservative 
finite difference method[16] at the Reynolds number of 
   (i.e.,    for uncontrolled flow). The 
detection plane was set at   . Here, the superscript 
of + denotes a quantity nondimensionalized by the friction 
velocity of the uncontrolled flow.

Fig. 3 shows the Reynolds shear stress, ′′ , and 
the weighted Reynolds shear stress appearing in the FIK 
identity for pipe flow, i.e., ′′ . As is noticed from 
Eq. (8), the contribution of Reynolds stress near the wall 
dominates both in uncontrolled and controlled cases. The 
difference in the areas covered by these two (controlled 
and uncontrolled) curves of the weighted Reynolds stress 
is directly proportional to the drag reduction by control. In 
the present case, the turbulent contribution is reduced by 
35%, while the total drag reduction is 24%. The 
contribution of Reynolds stress near the wall can be more 
clearly illustrated by plotting a cumulative contribution, 

, to the turbulent part, defined here as
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where     is the distance from the wall. As is 
shown in Fig. 4, the Reynolds stress within 80 wall units 
from the wall is responsible for 90% of the turbulent 
contribution to the skin friction in the case of uncontrolled 
flow. This fact makes the opposition control algorithm 
proposed by Choi et al.[15] very successful. Namely, it 
works to suppress the Reynolds stress near the wall, 
which results in considerable drag reduction at a low 
Reynolds number flow. A more interesting analysis can be 
made when the feedback control is applied only 
periodically and partially to the wall[17], where the 
sreamwise variation of  can be decomposed into 
different dynamical contribution through the analysis 
similar to the budget analysis of Reynolds stress.

Another example of controlled flow is a fully 
developed channel flow with uniform blowing on one wall 
and suction on the other. Fig. 5 shows the componential 
contributions computed from the DNS database of 
Sumitani and Kasagi[18], where the blowing/suction 
velocity is     . The key in the 
figure, , denotes the integrand of turbulent contribution, 
and  corresponds to that of the convective contribution 
(see, Eq. (15)). The dotted line in the figure represents 
  in an ordinary channel flow (  ) at the same 
bulk Reynolds number (  ), computed by the 
pseudospectral DNS code[19]. The weighted Reynolds 
shear stress on the blowing side (defined here, for 
convenience, as ≤ ≤ ) is larger than that in the case 
of   , while it is close to zero on the suction side 
(≤ ≤ ). The total turbulent contribution is slightly 
reduced from the ordinary channel flow. The integrand of 
convective contribution, , is negative on the blowing 
side and positive on the suction side. The total convective 



Fig. 6 Contributions to friction drag in surfactant-added channel 
flow. Redrawn based on Yu et al.[12]

Fig. 5 Contributions to friction drag in channel flow at   
with uniform blowing and suction[8]

Fig. 7 Thickness of the damping layer,  , required to achieve the 
same drag reduction rate,  [23]

contribution is slightly positive. Since the total convective 
contribution exceeds the amount of reduction in the 
turbulent contribution, the total  results in a larger 
value than that of the ordinary channel flow.

The last example is a surfactant-added channel flow 
performed by Yu et al.[12]. Direct numerical simulation is 
performed by assuming the Giesekus fluid model. The 
bulk Reynolds number is12000. The friction Weisenberg 
number, which represents the memory effect of the 
surfactant-added fluid, is 54, corresponding to 75 ppm 
CTAC surfactant solution. The fractional contribution to 
 is shown in Fig. 6, where the turbulent contribution 
drastically decreases with the addition of surfactant. The 
viscoelastic contribution (see, Eq. (14)), however, works to 
largely increase the friction drag. As a result of these 
changes, the total friction drag is reduced by about 30%. 
A similar trend is also reported for experimental data of 
polymer-added zero-pressure-gradient boundary layer[14]. 
The changes in the different contributions are found 
qualitatively similar to the case of the surfactant-added 
flow mentioned above. Likewise, the FIK identity can be 
used for investigation of drag reduction mechanism by 
other additives, such as microbubbles[20].

2.3 THE LOWER BOUND FOR NET POWER
The FIK identity further suggests that a drastic drag 

reduction can be achieved if the near-wall Reynolds shear 
stress is more ideally reduced. When an ideal feedback 
body force (instead of blowing/suction) was applied to 
DNS, the near-wall Reynolds shear stress became negative 
to yield a friction drag much lower than that of the 
laminar flow at the same Reynolds number[21].

An essential question with regard to the active control 
is the lower bound of net power(i.e., pumping plus 

actuation). For this question, Fukagata et al.[22] have 
given a mathematical proof very recently. It says that the 
lowest net power required for driving an incompressible 
constant mass-flux flow in a periodic duct having arbitrary 
constant-shape cross-section, when controlled via a 
distribution of zero-net mass-flux blowing/suction over the 
no-slip channel walls or via any body forces, is exactly 
that of the Stokes flow. 

2.4 CONTROL EFFECT AT PRACTICALLY HIGH REYNOLDS NUMBER
Another question concerning the control targeting at the 

near-wall turbulent structure is whether the near-wall flow 
manipulation is still effective even in practical applications 
at high Reynolds numbers. We theoretically investigated 
the Reynolds number effect on the drag reduction rate 
achieved by an idealized near-wall layer manipulation[23]. 
An assumption is made that all velocity fluctuations in the 
near-wall layer of      are perfectly damped. We 
also assume a fully developed turbulent channel flow 
under a constant flow rate, and derived a theoretical 
relationship among the Reynolds number of the 
uncontrolled flow  , the dimensionless damping layer 



(a)

(b)

Fig. 8 Cross-sectional view of an instantaneous streamwise 
velocity in channel flow at   : (a) uncontrolled; 
(b) with damping in the near-wall layer[23]

thickness , and the drag reduction rate . It is 
given as
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The sole empirical formula used in the derivation above 
is the Dean's formula[24] on the bulk mean velocity(the 
logarithmic law version).

The Reynolds number dependency of  required to 
achieve the same drag reduction rate  is shown in Fig. 
7. As   increases,  gradually increases. For high 
Reynolds numbers, where ≪  holds, Eq. (17) can 
reduce to ∼ , and this means the Reynolds 
number dependency is very weak. The asymptotic relation 
is in good agreement with Eq. (17) when   × , 
as shown in Fig. 7. Thus, large drag reduction can be 
obtained even at high Reynolds numbers if we can control 
and completely damp the near-wall velocity fluctuations. 

Fig. 8 shows the flow field computed in the 
corresponding DNS. The friction Reynolds number is 
about 650 and the damped layer thickness is   . 
The turbulence is drastically suppressed in the damped 
layer, and found considerably suppressed also in the 
undamped region. The change in the Reynolds shear stress 
gives a clue to explain the large drag reduction through 
the FIK identity. The drag reduction rate directly caused 
by the decrease of the Reynolds shear stress in the 
damped layer is 18%, while that due to the accompanied 
decrease of the Reynolds shear stress in the undamped 
region is 56%. For higher Reynolds numbers, the relative 
thickness of the damping layer  becomes negligibly 
small, so that the contribution away from he damped 
layers should be dominant. Thus, possible large drag 
reduction at high Reynolds numbers should be mainly 
attributed to the decrease of the Reynolds stress in the 
region away from the wall.

The present theoretical analysis provides a favorable 
support for the existing control schemes. Namely, 
attenuation of turbulence in the near-wall layer is still 
effective at higher Reynolds numbers appearing in real 
applications.

3. DEVELOPMENT OF NEW ACTIVE CONTROL SCHEMES

3.1 NEW ANALYTICAL SUBOPTIMAL CONTROL LAW
The FIK identity suggests that suppression of the 

Reynolds shear stress in the near-wall region is of primary 
importance in order to substantially reduce the skin 
friction drag. Once the near-wall Reynolds shear stress is 
suppressed, the stress far from the wall is also suppressed 
through the indirect effect as shown above. From this 
argument, a new suboptimal control law was derived by 
Fukagata and Kasagi[25]. In that work, the cost functional 
for a channel flow was defined as follows:
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Fig. 9 Weight distributions of the Reynolds shear stress-based 
suboptimal control law[25]

Fig. 10 Reynolds shear stress in pipe flow at    under 
the Reynolds shear stress-based suboptimal control[25]

Here,  denotes the local blowing/suction velocity at the 
wall, A is the area of wall S, ∆ is the time-span for 
optimization, and is the price for the control. 

By approximating the Reynolds shear stress at   
using the first-order Taylor expansion, viz.,

′′   
 



 (19)

the control input, , that minimizes the cost functional 
can be calculated analytically by the procedure proposed 
by Lee et al.[26]. The result is






 


 (20)

where the hat denotes the Fourier component,    
and   . There are two parameter:    
is the amplitude coefficient and can be interpreted as an 
inverse of influential length (see, Ref.[26], for details). 

A similar control law can be developed also for a pipe 
flow. Following the procedure by Xu et al.[27], an 
approximate control law is derived as

′  



 


(21)

where  is an mth-order modified Bessel function of the 
first kind and  ′ is its derivative. Although the 
expressions look different, the control laws for channel 
and pipe have essentially the same dynamical effect on 

the controlled flow[25].
The derived control law can be transformed to the 

physical space through the following inverse Fourier 
transform, similarly to Lee et al.[26], to read

 





 



∆∆ (22)

where ∆  and ∆  are the streamwise and spanwise 
grid spacings, respectively. The weight distribution in the 
physical space is shown in Fig. 9. The weights are 
symmetric in the spanwise direction and asymmetric in the 
streamwise direction. The product of parameters, , 
determines the tail length in the streamwise direction.

Performance of the proposed control algorithm was 
tested by DNS of turbulent pipe flow[25]. About 12% 
drag reduction is obtained when  ≈ and  . 
The profile of the Reynolds shear stress is shown in Fig. 
10. As expected, the near-wall Reynolds stress is 
suppressed by the present control. Note that, the profile of 
the present control is nearly the same as that of the 
opposition control (denoted as v-control) with 

  . 
Comparison is also made with the opposition control with 

  , in which the Reynolds stress around 
     is suppressed to give a higher drag reduction 
rate of 25%. The direct suppression with the present 
control seems to occur merely in the region of 
    . This is due to the first-order Taylor 
expansion used for the approximation of cost functional, 
i.e., Eq. (19). If the streamwise velocity above the wall, 
say at   , can be more accurately estimated, a 



Fig. 12 Anisotropic compliant surface model[32,33]

Fig. 11 Drag increment ∆ as functions of wavespeed c and 
wavenumber k in of Min et al.'s traveling wave 
control[29] reproduced by Mamori et al.[30]

higher drag reduction can be made by this control 
strategy. In fact, in DNS using the streamwise velocity 
above the wall as an idealized sensor signal, a drag 
reduction rate was about 25%[28], which is comparable to 
the opposition control.

3.2 TRAVELING WAVE CONTROL BY MIN ET AL.[29]
Based in the implication of the FIK identity, Min et 

al.[29] proposed a novel active predetermined control 
technique. They applied a traveling wave-like blowing and 
suction to channel flows. Through the linear analysis of 
Poiseuille flow and DNS of turbulent channel flow, they 
found that the upstream traveling wave (   in Fig. 11) 
can create a large negative Reynolds shear stress in the 
region near the wall and thereby the friction drag can be 
sustained at a level below that of the laminar flow (i.e., 
∆  in Fig. 11). This type of actuation is found to 
produce a net flux even in the absence of mean flow and 
therefore its mechanism can be interpreted as a pumping 
from the walls as discussed in Hoepffner and 
Fukagata[31].

It is worth noting that, according to the theorem on the 
net power[22] introduced in Section 2.3, the net power 
should be larger than the laminar pumping power even in 
the case of so-called sublaminar drag. In fact, Hoepffner 
and Fukagata[31] revisited Min et al.'s control and verified 
this argument on the total power.

4. PASSIVE CONTROL USING ANISOTROPIC 
COMPLIANT SURFACE

The implication of FIK identity has also been applied 
to consider a passive control[32]. We consider here a 
passive control using an anisotropic compliant surface 
model[33], as illustrated in Fig. 12. Due to the restriction 
of the inclined arms, this anisotropic compliant surface 
always moves so as to create a negative Reynolds shear 
stress on the wall.The membrane equation of motion can 
be written as
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′  
(23)

Here,     is the single variable determining the 
motion of membrane, and all the symbols are explained in 
Fig. 12 except for the damper coefficient D and the 
bending moment B. 

We consider an incompressible turbulent channel flow. 
The fluid velocity field is simulated by using the 
second-order finite difference code, which was originally 
developed for pipe flows[16] and later adapted to channel 
flows[34]. The flow rate is kept constant. The bulk 
Reynolds number, , is 3300, which corresponds to a 
friction Reynolds number of about     in the case 
of rigid walls. The computational domain is ×× 
and the number of cells is ×× in the 
streamwise (x), the wall-normal (y), and the spanwise (z) 
directions, respectively. This domain size is similar to that 



(a)

(b)
Fig. 13 Motion of the wall, Reynolds shear stress on the wall 

(color), and the vortical structure (white): (a) solid wall 
(b) anisotropic compliant surface[32]

used in the previous study of isotropic compliant surfaces 
by Xu et al.[35].

The membrane equation of motion is spatially 
discretized by the second-order accurate finite difference 
method on the same mesh as that for the wall boundary 
of the fluid velocity field. The time integration is done by 
RK3/CN method with the same time stepping as that for 
the fluid. The membrane is driven by the pressure and 
wall-shear fluctuations, whereas the velocity of the 
membrane computed at every instant is used as the 
boundary condition of the fluid velocity field at the wall.

In order to enable an optimization study, deformation of 
the membrane is neglected. This simplification is justified 
when the wall displacement is relatively small (say, less 
than about 5 wall unit). Note that Kang and Choi[36] 
from their DNS of feedback-controlled channel flow 
reported that, when the wall displacement is less than 5 
wall unit, the most of the drag reduction is due to the 
velocity induced by the wall motion rather than the wall 
displacement. The computational time step is chosen so 
that both the CFL number for the fluid and that for the 

membrane are less than 0.5.
The surface model has several parameters that have to 

be determined. The inverse design problem is formulated 
as an optimization problem. Our objective is to minimize 
the friction drag coefficient , which is a function of 
wall parameters       , under the 
restriction of wall-deformation amplitude. Therefore, the 
cost function can be defined here as the friction drag that 
we want to minimize. We also added a penalty term in 
order to avoid solutions lading to large deformation.

We implement an Evolution Strategy with Adaptation of 
the Covariance Matrix (CMA-ES)[37]. The competitive 
performance and robustness of CMA-ES have been 
demonstrated in a number of benchmark optimization 
problems[38] and applications. Based on a preliminary 
parameter study, we choose a logarithmic encoding for all 
parameters except  . 

The CMA-ES was initialized with sets of parameters 
distributed over the initial search domain. The available 
computation time permitted about 1000 evaluation trials (to 
be exact, 992 evaluations) of the cost function, each one 
involving two simulations with different initial turbulent 
fields (viz., about 2000 DNS runs were made in total).

Fig. 13 shows the wall motion of the most drag 
reducing case (  ). The surface deforms in a 
wavelike manner, which travels in the downstream 
direction. The wavelength about 330 wall unit (i.e., the 
same length as the computational domain) and the 
wavespeed is observed to be   . In terms of the 
bulk velocity, this corresponds to   .

The Reynolds shear stress on the wall is made largely 
negative in front of and behind the hill where the 
wall-velocity is large. The quasi-streamwise vortices 
observed on the solid wall (Fig. 13(a)) are less populated 
on the compliant wall (Fig. 13(b)), and instead, spanwise 
vortical structures are found to be increased. Such 
spanwise vortices have been observed also in other drag 
reducing flows underfeedback control[21,39]. Although its 
generation mechanism and its role in drag reduction are 
not fully clear, it is conjectured that they work as "rollers'' 
between the wall and the bulk flow[39].

5. SUMMARY

In the present paper, we have introduced the identity 
equation between the Reynolds shear stress and the skin 
friction (the FIK identity) and some example of DNS of 
turbulent pipe and channel flows for skin friction reduction 
based on the implication of the identity equation. DNS is 



a powerful tool for flow control study and, of course, it 
can be applied for other types of flow. For instance, in 
the author's group, an active control of mixing layer by 
means of flapping actuator[40] and a passive control of 
flow around a cylinder by using porous media[41] are 
currently studied by means of DNS. Interested readers are 
referred to the papers cited above.
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