A NUMERICAL ANALYSIS ON ELECTROHYDRODYNAMICS (EHD) OF THE FLOW AND THE COLLECTION MECHANISMS INSIDE AN ELECTROSTATIC PRECIPITATOR WITH A SPIRAL SPIKE ELECTRODE

나선 스파이크 전기집진기 내 유동 및 집진 현상에 대한 전기수력학 수치해석 연구

  • Published : 2008.12.31

Abstract

In the present study, a numerical analysis on electrohydrodynamics (EHD) of the flow and the collection mechanisms inside a electrostatic precipitator with a spiral spike electrode were investigated. The phenomena of the electrostatic precipitator include complex interactions between the electric field, the fluid flow and the particle motion. To validate the numerical method, the numerical computation for the electric field of a simple wire-pipe type electrostatic system having an analytic solution were performed. Using this numerical method, the electric field of the spiked electrostatic precipitator was simulated. And the fluid flow and the particle motion inside the spiked electrostatic precipitator were numerically analyzed.

Keywords

References

  1. 2001, Jedrusik, M., Gajewski, J.B. and Swierczok, J, "Effect of the Particle Diameter and Corona Electrode Geometry on the Particle Migration Velocity in Electrostatic Precipitators," Journal of Electrostatics, Vol.51-52, pp.245-251 https://doi.org/10.1016/S0304-3886(01)00047-X
  2. 2003, Jedrusik, M., Swierczok, A. and Teisseyre, R., "Experimental Study of Fly Ash Precipitation in a Model Electrostatic Precipitator with Discharge Electrodes of Differenct Design," Powder Technology, Vol.135-136, pp.295-301 https://doi.org/10.1016/j.powtec.2003.08.021
  3. 2006, Chang, J.S., Brocilo, D., Urashima, K., Dekowski, J., Podlinski, J., Mizeraczyk, J. and Touchard, G., "On-set of EHD Turbulence for Cylinder in Cross Flow under Corona Discharge," Journal of Electrostatics, Vol.64, pp.569-573 https://doi.org/10.1016/j.elstat.2005.10.035
  4. 2002, Anagnostopoulos, J. and Bergeles, G., "Corona Discharge Simulation in Wire-duct Electrostatic Precipitator," Journal of Electrostatics, Vol.54, pp.129-147 https://doi.org/10.1016/S0304-3886(01)00172-3
  5. 2005, Nikas, K.S.P., Varonos, A.A. and Bergeles, G.C., "Numerical Simulation of the Flow and the Collection Mechanisms inside a Laboratory Scale Electrostatic Precipitator," Journal of Electrostatics, Vol.63, pp.423-443 https://doi.org/10.1016/j.elstat.2004.12.005
  6. 2006, Skodras, G., Kaldis, S.P., Sofialidis, D., Faltsi, O.,n Grammelis, P. and Sakellaropoulos, G.P., "Particulate Removal via Electrostatic Precipitators - CFD Simulation," Fuel Processing Technology, Vol.87, pp.623-631 https://doi.org/10.1016/j.fuproc.2006.01.012
  7. 2006, Yamamoto, T., Morita, Y., Fujishima, H. and Okubo, M., "Three-dimensional EHD Simulation for Point Corona Electrostatic Precipitator Based on Laminar and Turbulent Models," Journal of Electrostatics, Vol.64, pp.628-633 https://doi.org/10.1016/j.elstat.2005.10.015
  8. 2004, Fujishima, H., Ueba, Y., Tomimatsu, K. and Yamamoto, T, "Electrohydrodynamics of Spiked Electrode Electrostatic Precipitators," Journal of Electrostatics, Vol.62, pp.291-308 https://doi.org/10.1016/j.elstat.2004.05.006
  9. 2008, Kawamoto, H. and Umezu, S., "Electrostatic Micro-ozone Fan that Utilizes Ionic Wind Induced in Pin-to-plate Corona Discharge System," Journal of Electrostatics, Vol.66, pp.445-454 https://doi.org/10.1016/j.elstat.2008.04.009
  10. 2004, STAR-CD Methodology Version 3.24, Computational Dynamics Ltd
  11. 1914, Townsend, J.S., "The Potentials to Maintain Currents between Coaxial Cylinders," Philos. Mag. J. Sci., Vol.28, pp.83-90 https://doi.org/10.1080/14786440708635186