Methodology to Quantify Rock Behavior in Shallow Rock Tunnels by Analytic Hierarchy Process and Rock Engineering Systems

계층 분석적 의사결정과 암반 공학 시스템에 의한 저심도 암반터널에서의 암반거동 유형 정량화 방법론

  • 유영일 (서울대학교 에너지시스템공학부) ;
  • 김만광 (서울대학교 에너지시스템공학부) ;
  • 송재준 (서울대학교 에너지시스템공학부)
  • Published : 2008.12.31

Abstract

For the quantitative identification of rock behavior in shallow tunnels, we recommend using the rock behavior index (RBI) by the analytic hierarchy process (AHP) and the Rock Engineering Systems (RES). AHP and RES can aid engineers in effectively determining complex and un-structured rock behavior utilizing a structured pair-wise comparison matrix and an interaction matrix, respectively. Rock behavior types are categorized as rock fall, cave-in, and plastic deformation. Seven parameters influencing rock behavior for shallow depth rock tunnel are determined: uniaxial compressive strength, rock quality designation (RQD), joint surface condition, stress, pound water, earthquake, and tunnel span. They are classified into rock mass intrinsic, rock mass extrinsic, and design parameters. An advantage of this procedure is its ability to obtain each parameter's weight. We applied the proposed method to the basic design of Seoul Metro Line O and quantified the rock behavior into RBI on rock fall, cave-in, and plastic deformation. The study results demonstrate that AHP and RES can give engineers quantitative information on rock behavior.

저심도 터널 굴착시 예상되는 암반 거동을 정량적으로 파악하기 위해 계층 분석적 의사결정 방법과 암반 공학 시스템 방법을 적용하여 암반 거동 지수를 산정하였다. 복잡하고 조직화되지 않은 암반 거동을 효과적으로 결정하기 위해 쌍대 비교 매트릭스를 이용하는 계층 분석적 의사결정 방법과 상호 영향 매트릭스를 이용하는 암반 공학 시스템 방법을 적용하였고, 전문가 의견의 불확실성을 극복하고자 퍼지 델파이 방법을 적용하였다. 저심도 암반 터널 굴착 시 예상되는 암반 거동 유형으로 소성 변형, 낙반과 낙석을 제시하였다. 각각의 암반 거동 유형을 결정하기 위해 일축압축강도, 암질 지수와 절리 조건을 포함하는 암반 내생적 매개변수, 응력, 지하수와 지진 조건을 포함하는 암반 외생적 매개변수와 굴착 매개변수를 고하였다. 이를 서울 지하철 O호선 O공구 설계에 적용하여 예상되는 암반 거동 유형을 정량적인 암반 거동 지수로 제시하였다.

Keywords

References

  1. Martin C. D., Kaiser P. K., Christiansson R., 2003, Stress, instability and design of underground excavations, International Journal of Rock Mechanics & Mining Sciences 40, 1027-1047 https://doi.org/10.1016/S1365-1609(03)00110-2
  2. Goricki A., Schubert W., Riedmueller G., 2004, New developments for the design and construction of tunnels in complex rock masses, International Journal of Rock Mechanics and Mining Sciences Volume 41, Supplement 1, 720-725
  3. Palmstrom A. & Stille H., 2007, Ground behavior and rock engineering tools for underground excavations, Tunnelling and Underground Space Technology 22, 363-376 https://doi.org/10.1016/j.tust.2006.03.006
  4. Stille H. & Palmstrom A., 2008, Ground behavior and rock mass composition in underground excavations, Tunnelling and Underground Space Technology 23, 46-64 https://doi.org/10.1016/j.tust.2006.11.005
  5. Singh M., Singh B.,Choudhari J., 2007. Critical strain and squeezing of rock mass in tunnels, Tunnelling and Underground Space Technology 22, 343-350 https://doi.org/10.1016/j.tust.2006.06.005
  6. Cai M., Kaiser P. K., Uno H., Tasaka Y., and Minami M., 2004, Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system, International Journal of Rock Mechanics & Mining Sciences 41, 3-19 https://doi.org/10.1016/S1365-1609(03)00025-X
  7. Poschl I., and Kleberger J., 2004, Geotechnical risk in rock mass characterization-a concept, Geotechnical risks in rock tunnels, 145-154
  8. Hudson, J. A. (1992), "Rock Engineering Systems", Rock Engineering Consultants and Imperial College, University of London, Ellis Horwood, New York
  9. Saaty T., 1980, The Analytic Hierarchy Process. McGraw -Hill International Book Company, New York
  10. Saaty T., 1996, Decision making with dependence and feedback: the analytic network process, RWS Publications, Pittsburgh
  11. Benardos A. G. and Kaliampakos D. C., 2004, A methodology for assessing geotechnical hazards for TBM tunneling -illustrated by Athens Metro, Greece, International Journal of Rock Mechanics & Mining Sciences 41, 987-999 https://doi.org/10.1016/j.ijrmms.2004.03.007
  12. Chen C. S. and Liu Y. C., 2007, A methodology for evaluation and classification of rock mass quality on tunnel engineering, Tunnelling and Underground Space Technology 23, 377-387
  13. Ayalew L., Yamagishi H., Marui H., and Kanno T., 2005, Landslides in Sado Island of Japan: Part II. GISbased susceptibility mapping with comparisons of results from two methods and verifications, Engineering Geology 81, 432-445 https://doi.org/10.1016/j.enggeo.2005.08.004
  14. Liu Y. C. and Chen C. S., 2007, A new approach for application of rock mass classification on rock slope stability assessment, Engineering Geology 89, 128-143
  15. Neaupane K. M. and Piantanakulchai, 2006, Analytic network process model for landslide hazard zonation, Geology 85, 281-294 https://doi.org/10.1016/j.enggeo.2006.02.003
  16. Martin, C. D., Kaiser, P. K., McCreath, D. R., 1999, Hoek-Brown parameters for predicting the depth of brittle failure around tunnels, Canadian Geotechnical Journal 36(1), 136-151 https://doi.org/10.1139/cgj-36-1-136
  17. Kaiser P. K., Diederichs M. S., Martin C. D., Sharp J., and Steiner W., 2000, Underground works in hard rock tunneling and mining, An international conference on geotechnical and geological engineering
  18. Kaufmann A. and Gupta M.M, 1998, Fuzzy Mathematical Models in Engineering and Management Science. North -Holland, Amsterdam
  19. Leopold, L. B., Clarke, F. E., Hanshaw, B. B. and Balsley, J. R. (1971), "A Procedure for Evaluating Environmental Impact", US Geological (USGS) Circular 645 USGS, Government Printing Office, Washington, DC
  20. Hudson, J. A. and Harrison, J. P. (1992), "A New Approach to Studying Complete Rock Engineering Problems", Quarterly J. of Engineering Geology, Vol. 25, 93-105 https://doi.org/10.1144/GSL.QJEG.1992.025.02.03
  21. Mazzoccola, D. F. and Hudson, J. A. (1996), "A Comprehensive Method of Rock Mass Characterization for Indicating Natural Slope Instability", Quarterly J. of Engineering Geology, Vol. 29, 37-56 https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.03
  22. Sonmez H., Ulusay R., 1999, Modifications to the geological strength index(GSI) and their applicability to stability of slopes, International Journal of Rock Mechanics & Mining Sciences 36, 743-760 https://doi.org/10.1016/S0148-9062(99)00043-1