DOI QR코드

DOI QR Code

활성대조군을 이용한 두 군 설계와 위약군을 포함한 세 군 설계의 비열등성 시험

Non-Inferiority Test in a Two-Arm Trial and a Three-Arm Trial Including a Placebo

  • 이지선 (가톨릭대학교 의학통계학과) ;
  • 김동재 (가톨릭대학교 의학통계학과)
  • 발행 : 2008.12.31

초록

비열등성 시험시에 치료군(treatment group)과 활성대조군(active control group)을 이용한 모형으로 Hauschke 등 (1999)이 제안한 모수적 검정법이 있다. 이 방법은 위약군(placebo group)과 직접적인 비교가 불가능하므로 Pigeot 등 (2003)이 세 군으로 확장한 검정법을 제안하였다. 그러나 이와 같은 두 검정법은 구체적인 분포가정이 필요하다. 이런 단점을 보완하기 위하여 본 논문에서는 비모수적 방법으로서 두 군 설계에 Wilcoxon 순위합 검정(Wilcoxon, 1945)을 이용한 방법을, 세 군 설계에 Scheirer 등 (1976)이 제안한 선형대비검정을 확장한 새로운 방법을 제안한다. 또한 모의실험을 통하여 모수적 방법과 비모수적 방법간의 검정력을 비교하였다.

Two-arm non-inferiority trials is often applied to parametric procedure suggested by Hauschke et al. (1999). Since this design does not allow a direct comparison of a new treatment group with placebo group, parametric procedure in a three-arm non-inferiority trial with a placebo group was suggested by Pigeot et al. (2003). But, procedures in these designs are necessary for distribution assumptions. Therefore we propose, in this paper, non parametric procedures employing Wilcoxon rank sum test in a two-arm design and linear contrast test suggested by Scheirer et al. (1976) in a three-arm design. The proposed nonparametric procedures and parametric procedures are compared by Monte Carlo simulation study.

키워드

참고문헌

  1. Hauschke, D., Kieser, M., Diletti, E. and Burke, M. (1999). Sample size determination for proving equivalence based on the ratio of two means for normally distributed data, Statistics in Medicine, 18, 93-105 https://doi.org/10.1002/(SICI)1097-0258(19990115)18:1<93::AID-SIM992>3.0.CO;2-8
  2. Hung, H. M. J., Wang, S. J., Tsong, Y., Lawrence, J. and O'Neil, R. T. (2003). Some fundamental issues with non-inferiority testing in active controlled trials, Statistics in Medicine, 22, 213-225 https://doi.org/10.1002/sim.1315
  3. Hwang, I. K. and Morikawa, T. (1999). Design issues in noninferiority/equivalence trials, Drug Information Journal, 33, 1205-1218 https://doi.org/10.1177/009286159903300424
  4. Kruskal, W. H. (1952). A nonparametric test for the several sample problem, The Annals of Mathematical Statistics, 23, 525-540 https://doi.org/10.1214/aoms/1177729332
  5. Pigeot, I., SchÄafer, J., Rohmel, J. and Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo, Statistics in Medicine, 22, 883-899 https://doi.org/10.1002/sim.1450
  6. Scheirer, C. J., Ray, W. S. and Hare, N. (1976). The analysis of ranked data derived from completely randomized factorial designs, Biometrics, 32, 429-434 https://doi.org/10.2307/2529511
  7. Wald, A. and Wolfowitz, J. (1944). Statistical tests based on permutations of the observations, The Annals of Mathematical Statistics, 15, 358-372 https://doi.org/10.1214/aoms/1177731207
  8. Wilcoxon, F. (1945). Individual comparisons by ranking methods, Biometrics Bulletin, 6, 80-83

피인용 문헌

  1. Nonparametric Method for a Non-inferiority Test using Confidence Interval vol.27, pp.5, 2014, https://doi.org/10.5351/KJAS.2014.27.5.833