DOI QR코드

DOI QR Code

Enhanced Sialylation of Recombinant Erythropoietin in CHO Cells by Human Glycosyltransferase Expression

  • Published : 2008.12.31

Abstract

Sialylation, the attachment of sialic acid residues to a protein, can affect the biological activity and in vivo circulatory half-life of glycoproteins. Human ${\alpha}2$,3-sialyltransferase (${\alpha}2$,3-ST) and ${\beta}1$,4-galactosyltransferase (${\beta}1$,4-GT) are responsible for terminal sialylation and galactosylation, respectively. Enhanced sialylation of human erythropoietin (EPO) by the expression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT was achieved using recombinant Chinese hamster ovary (CHO) cells (EC1). The sialic acid content and sialylation of N-glycans were evaluated by HPLC. When ${\alpha}2$,3-ST was expressed in CHO cells (EC1-ST2), the sialic acid content (moles of sialic acid/mole of EPO) increased from 6.7 to 7.5. In addition, the amount of trisialylated glycans increased from 17.3% to 26.1 %. When ${\alpha}2$,3-ST and ${\beta}1$,4-GT were coexpressed in CHO cells (EC1-GTST15), the degree of sialylation was greater than that in EC1-ST2 cells. In the case of EC1-GTST15 cells, the sialic acid content increased to 8.2 and the proportion of trisialylated glycans was markedly increased from 17.3% to 35.5%. Interestingly, the amount of asialoglycans decreased only in the case of GTST15 cells (21.4% to 14.2%). These results show that coexpression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT is more effective than the expression of ${\alpha}2$,3-ST alone. Coexpression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT did not affect CHO cell growth and metabolism or EPO production. Thus, coexpression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT may be beneficial for producing therapeutic glycoproteins with enhanced sialylation in CHO cells.

Keywords

References

  1. Ailor, E., N. Takahashi, Y. Tsukamoto, K. Masuda, B. A. Rahman, D. L. Jarvis, Y. C. Lee, and M. J. Betenbaugh. 2000. N-Glycan patterns of human transferrin produced in Trichoplusia ni insect cells: Effects of mammalian galactosyltransferase. Glycobiology 10: 837-847 https://doi.org/10.1093/glycob/10.8.837
  2. Anumula, K. R. 1995. Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection. Anal. Biochem. 230: 24-30 https://doi.org/10.1006/abio.1995.1432
  3. Chang, K. H., K. S. Kim, and J. H. Kim. 1999. N-Acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic. Res. 30: 85-91 https://doi.org/10.1080/10715769900300091
  4. Choi, O., N. Tomiya, J. H. Kim, J. M. Slavicek, M. J. Betenbaugh, and Y. C. Lee. 2003. N-Glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system. Glycobiology 13: 539-548 https://doi.org/10.1093/glycob/cwg071
  5. Chung, B. S., Y. T. Jeong, K. H. Chang, J. Kim, and J. H. Kim. 2001. Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J. Microbiol. Biotechnol. 11: 1087-1092
  6. Cockett, M. I., C. R. Bebbington, and G. T. Yarranton. 1990. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Bio/Technology 8: 662-667 https://doi.org/10.1038/nbt0790-662
  7. Conradt, H. S., M. Nimtz, K. E. Dittmar, W. Lindenmaier, J. Hoppe, and H. Hauser. 1989. Expression of human interleukin-2 in recombinant baby hamster kidney, Ltk-, and Chinese hamster ovary cells. Structure of O-linked carbohydrate chains and their location within the polypeptide. J. Biol. Chem. 264: 17368-17373
  8. Dordal, M. S., F. F. Wang, and E. Goldwasser. 1985. The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293-2299 https://doi.org/10.1210/endo-116-6-2293
  9. Ferrari, J., J. Gunson, J. Lofgren, L. Krummen, and T. G. Warner. 1998. Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol. Bioeng. 60: 589-595 https://doi.org/10.1002/(SICI)1097-0290(19981205)60:5<589::AID-BIT9>3.0.CO;2-K
  10. Fukuta, K., T. Yokomatsu, R. Abe, M. Asanagi, and T. Makino. 2000. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj. J. 17: 895-904 https://doi.org/10.1023/A:1010977431061
  11. Gu, X. and D. I. Wang. 1998. Improvement of interferongamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58: 642-648 https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<642::AID-BIT10>3.0.CO;2-9
  12. Jenkins, N. and E. M. Curling. 1994. Glycosylation of recombinant proteins: Problems and prospects. Enzyme Microb. Technol. 16: 354-364 https://doi.org/10.1016/0141-0229(94)90149-X
  13. Joziasse, D. H., W. E. Schiphorst, D. H. Van den Eijnden, J. A. Van Kuik, H. Van Halbeek, and J. F. Vliegenthart. 1987. Branch specificity of bovine colostrum CMP-sialic acid: Gal beta 14GlcNAc-R alpha 26-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the Nacetyllactosamine type. J. Biol. Chem. 262: 2025-2033
  14. Kim, N. S. and G. M. Lee. 2000. Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol. Bioeng. 71: 184-193 https://doi.org/10.1002/1097-0290(2000)71:3<184::AID-BIT1008>3.0.CO;2-W
  15. Kitagawa, H. and J. C. Paulson. 1993. Cloning and expression of human Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase. Biochem. Biophys. Res. Commun. 194: 375-382 https://doi.org/10.1006/bbrc.1993.1830
  16. Kornfeld, R. and S. Kornfeld. 1985. Assembly of asparaginelinked oligosaccharides. Annu. Rev. Biochem. 54: 631-664 https://doi.org/10.1146/annurev.bi.54.070185.003215
  17. Laubach, V. E., E. P. Garvey, and P. A. Sherman. 1996. Highlevel expression of human inducible nitric oxide synthase in Chinese hamster ovary cells and characterization of the purified enzyme. Biochem. Biophys. Res. Commun. 218: 802-807 https://doi.org/10.1006/bbrc.1996.0143
  18. Lawrence, S. M., K. A. Huddleston, N. Tomiya, N. Nguyen, Y. C. Lee, W. F. Vann, T. A. Coleman, and M. J. Betenbaugh. 2001. Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconj. J. 18: 205-213 https://doi.org/10.1023/A:1012452705349
  19. Masri, K. A., H. E. Appert, and M. N. Fukuda. 1988. Identification of the full-length coding sequence for human galactosyltransferase (beta-N-acetylglucosaminide: Beta 1,4- galactosyltransferase). Biochem. Biophys. Res. Commun. 157: 657-663 https://doi.org/10.1016/S0006-291X(88)80300-0
  20. Mastrangelo, A. J., J. M. Hardwick, F. Bex, and M. J. Betenbaugh. 2000. Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors. Biotechnol. Bioeng. 67: 544-554 https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<544::AID-BIT5>3.0.CO;2-#
  21. Nakagawa, H., Y. Kawamura, K. Kato, I. Shimada, Y. Arata, and N. Takahashi. 1995. Identification of neutral and sialyl Nlinked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal. Biochem. 226: 130-138 https://doi.org/10.1006/abio.1995.1200
  22. Nemansky, M., W. E. Schiphorst, and D. H. Van den Eijnden. 1995. Branching and elongation with lactosaminoglycan chains of N-linked oligosaccharides result in a shift toward termination with alpha 23-linked rather than with alpha 26-linked sialic acid residues. FEBS Lett. 363: 280-284 https://doi.org/10.1016/0014-5793(95)00336-8
  23. Ngantung, F. A., P. G. Miller, F. R. Brushett, G. L. Tang, and D. I. Wang. 2006. RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95: 106-119 https://doi.org/10.1002/bit.20997
  24. Oster, T., C. Thioudellet, I. Chevalot, C. Masson, M. Wellman, A. Marc, and G. Siest. 1993. Induction of recombinant human gamma-glutamyl transferase by sodium butyrate in transfected V79 and CHO Chinese hamster cells. Biochem. Biophys. Res. Commun. 193: 406-412 https://doi.org/10.1006/bbrc.1993.1638
  25. Renard, J. M., R. Spagnoli, C. Mazier, M. F. Salles, and E. Mandine. 1988. Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems. Biotechnol. Lett. 10: 91-96 https://doi.org/10.1007/BF01024632
  26. Stephenson, J. R., A. A. Axelrad, D. L. McLeod, and M. M. Shreeve. 1971. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68: 1542-1546 https://doi.org/10.1073/pnas.68.7.1542
  27. Takeuchi, M., S. Takasaki, H. Miyazaki, T. Kato, S. Hoshi, N. Kochibe, and A. Kobata. 1988. Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 263: 3657-3663
  28. Varki, A. 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97-130 https://doi.org/10.1093/glycob/3.2.97
  29. Wang, F. F., C. K. Kung, and E. Goldwasser. 1985. Some chemical properties of human erythropoietin. Endocrinology 116: 2286-2292 https://doi.org/10.1210/endo-116-6-2286
  30. Warner, T. G. 1999. Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 9: 841-850 https://doi.org/10.1093/glycob/9.9.841
  31. Weikert, S., D. Papac, J. Briggs, D. Cowfer, S. Tom, M. Gawlitzek, et al. 1999. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116-1121 https://doi.org/10.1038/15104
  32. Weiss, P. and G. Ashwell. 1989. The asialoglycoprotein receptor: Properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169-184
  33. Wong, N. S., M. G. Yap, and D. I. Wang. 2006. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter overexpression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016 https://doi.org/10.1002/bit.20815
  34. Yamamoto, S., S. Hase, S. Fukuda, O. Sano, and T. Ikenaka. 1989. Structures of the sugar chains of interferon-gamma produced by human myelomonocyte cell line HBL-38. J. Biochem. (Tokyo) 105: 547-555 https://doi.org/10.1093/oxfordjournals.jbchem.a122703
  35. Zhang, X., S. H. Lok, and O. L. Kon. 1998. Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: Functional consequences for human erythropoietin expression and bioactivity. Biochim. Biophys. Acta 1425: 441-452 https://doi.org/10.1016/S0304-4165(98)00095-6

Cited by

  1. Engineering mammalian cells in bioprocessing - current achievements and future perspectives vol.55, pp.4, 2008, https://doi.org/10.1042/ba20090363
  2. An investigation of intracellular glycosylation activities in CHO cells: Effects of nucleotide sugar precursor feeding vol.107, pp.2, 2010, https://doi.org/10.1002/bit.22812
  3. Sialylation enhancement of CTLA4‐Ig fusion protein in Chinese hamster ovary cells by dexamethasone vol.107, pp.3, 2010, https://doi.org/10.1002/bit.22827
  4. Profiling of N‐glycosylation gene expression in CHO cell fed‐batch cultures vol.107, pp.3, 2010, https://doi.org/10.1002/bit.22828
  5. Current state and perspectives on erythropoietin production vol.95, pp.6, 2008, https://doi.org/10.1007/s00253-012-4291-x
  6. Biological Insights into Therapeutic Protein Modifications throughout Trafficking and Their Biopharmaceutical Applications vol.2013, pp.None, 2008, https://doi.org/10.1155/2013/273086
  7. Effect of Mild-Thiol Reducing Agents and ${\alpha}2,3$-Sialyltransferase Expression on Secretion and Sialylation of Recombinant EPO in CHO Cells vol.23, pp.5, 2008, https://doi.org/10.4014/jmb.1303.03046
  8. Role of Chinese hamster ovary central carbon metabolism in controlling the quality of secreted biotherapeutic proteins vol.2, pp.1, 2008, https://doi.org/10.4155/pbp.13.65
  9. Site-specific qualitative and quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin vol.406, pp.25, 2008, https://doi.org/10.1007/s00216-014-8037-8
  10. Glycosylation: impact, control and improvement during therapeutic protein production vol.34, pp.4, 2008, https://doi.org/10.3109/07388551.2013.793649
  11. Optimizing Chinese hamster ovary cell line development via targeted control of N-glycosylation vol.3, pp.7, 2008, https://doi.org/10.4155/pbp.15.25
  12. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression vol.31, pp.2, 2008, https://doi.org/10.1002/btpr.2038
  13. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N‐glycan branching and sialylation vol.112, pp.11, 2015, https://doi.org/10.1002/bit.25650
  14. Multigene expression in stable CHO cell pools generated with the piggyBac transposon system vol.32, pp.5, 2008, https://doi.org/10.1002/btpr.2319
  15. α2,6-Sialyltransferase 과발현을 통한 인간형 시알산 부가 hCTLA4-Ig 생산 CHO 세포주 제작 vol.32, pp.3, 2008, https://doi.org/10.7841/ksbbj.2017.32.3.193
  16. Proteomic analysis of host cell protein dynamics in the supernatant of Fc‐fusion protein‐producing CHO DG44 and DUKX‐B11 cell lines in batch and fed‐batch cultures vol.114, pp.10, 2008, https://doi.org/10.1002/bit.26360
  17. Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis vol.7, pp.None, 2008, https://doi.org/10.1038/s41598-017-13609-4
  18. Improving Immunotherapy Through Glycodesign vol.9, pp.None, 2008, https://doi.org/10.3389/fimmu.2018.02485
  19. Glycoengineering in CHO Cells: Advances in Systems Biology vol.13, pp.3, 2008, https://doi.org/10.1002/biot.201700234
  20. Antibody glycoengineering strategies in mammalian cells vol.115, pp.6, 2018, https://doi.org/10.1002/bit.26567
  21. Metabolic engineering of CHO cells to prepare glycoproteins vol.2, pp.3, 2008, https://doi.org/10.1042/etls20180056
  22. Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells vol.8, pp.None, 2008, https://doi.org/10.1038/s41598-018-25580-9
  23. Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells vol.8, pp.11, 2008, https://doi.org/10.1021/acssynbio.9b00215
  24. Application of Genetic Engineering in Biotherapeutics Development vol.15, pp.2, 2008, https://doi.org/10.1007/s12247-019-09411-6
  25. Transfection of glycoprotein encoding mRNA for swift evaluation of N‐glycan engineering strategies vol.36, pp.4, 2008, https://doi.org/10.1002/btpr.2990