DOI QR코드

DOI QR Code

High-Level Secretory Expression of Human Procarboxypeptidase B by Fed-Batch Cultivation of Pichia pastoris and its Partial Characterization

  • Kim, Mi-Jin (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Sang-Hyuk (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Lee, Jae-Hyung (Department of Biomaterial Control, Dong-Eui University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Jong-Hyun (Department of Biotechnology, Osaka University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
  • Published : 2008.12.31

Abstract

The procpb gene encoding human procarboxypeptidase B (proCPB, GeneBank access code AJ224866) was cloned and its Pichia expression plasmid, $pPIC9{\alpha}$/hproCPB (9.2 kb), was constructed, in which procpb was under the control of the AOXl promoter and connected to the downstream of the mating factor ${\alpha}$-1 ($MF{\alpha}1$) signal sequence. The plasmid was linearized by digestion with Sacl, and integrated into the genome of P. pastoris strain GS115. By culturing of Pichia transformant on methanol medium, the human proCPB was successfully expressed and secreted into the culture supernatant. Moreover, Western blot analysis of the extracellular proteins showed proCPB bands clearly at a molecular mass of 45 kDa, confirming the expression of proCPB with its right size. The CPB activity reached about 3.5 U/ml and 12.7 U/ml in the flask and fermentor batch cultures of Pichia transformant, respectively. No CPB enzyme activity was found in the intracellular fraction. When the fed-batch cultivation was performed with methanol and glycerol mixture as a feeding medium, the extracellular CPB activity was increased to 42.0 U/ml, which corresponds to a 3.3-fold higher level of CPB activity than that of batch culture. The $K_m$ and $k_{cat}$ values of recombinant human CPB enzyme for hippuryl-$_L$-Arg as a substrate were estimated to be 0.16 mM and $11.93\;sec^{-1}$, respectively.

Keywords

References

  1. Arolas, J. L., J. Vendrell, F. X. Aviles, and L. D. Fricker. 2007. Metallocarboxypeptidases: Emerging drug targets in biomedicine. Curr. Pharm. Des. 13: 349-366 https://doi.org/10.2174/138161207780162980
  2. Auld, D. S. 1998. Carboxypeptidase A, pp. 1321-1326. In B. Alan and J. Woessner (eds.), Handbook of Proteolytic Enzyme. Academic Press, Elsevier, New York
  3. Bradley, G., R. J. Naudé, K. Muramoto, F. Yamauchi, and W. Oelofsen. 1996. Ostrich (Struthio camelus) carboxypeptidase B: Purification, kinetic properties, and characterization of the pancreatic enzyme. Int. J. Biochem. Cell Biol. 28: 521-529 https://doi.org/10.1016/1357-2725(95)00166-2
  4. Burgous, F. J., M. Salva, F. Soriano, E. Mendez, and F. X. Aviles. 1991. Analysis of the activation process of porcine proarboxypeptidase B and determination of the sequence of its activation segment. Biochemistry 30: 4082-4089 https://doi.org/10.1021/bi00230a038
  5. Carmen, J., I. Marison, and U. V. Stockar. 2007. Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures. J. Microbiol. Biotechnol. 17: 824-837
  6. Clare, J. J., F. B. Rayment, S. P. Ballantine, K. Sreekrishna, and M. A. Romanos. 1991. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology 9: 455-460 https://doi.org/10.1038/nbt0591-455
  7. Corinne, S. K., D. B. Paule, A. Berton, and I. Crenon. 2006. High-level expression of nonglycosylated human pancreatic lipase-related protein 2 in Pichia pastoris. Protein Expr. Purif. 49: 284-291 https://doi.org/10.1016/j.pep.2006.06.001
  8. Datar, R. and C. G. Rosen. 1990. Pichia pastoris, pp. 741-793. In J. A. Asenjo (ed.) Process Economics Downstream Separation Processes in Biotechnology. Marcel Dekker, Inc. New York
  9. Donald, F. S., S. Cho, P. E. Oyer, S. Terris, J. D. Peterson, and A. H. Rubenstein. 1971. Isolation and characterization of proinsulin C-peptide from bovine pancreas. J. Biol. Chem. 246: 1375-1382
  10. Edge, M., C. Forder, J. Hennam, I. Lee, D. Tonge, I. Hardern, et al. 1998. Engineered human carboxypeptidase B enzymes that hydrolyse hippuryl-L-glutamic acid: Reversed-polarity mutants. Protein Eng. 11: 1229-1234 https://doi.org/10.1093/protein/11.12.1229
  11. Folk, J. E., E. C. Wolff, and E. W. Schirmer. 1962. The kinetics of carboxypeptidase B activity. J. Biol. Chem. 237: 3100-3104
  12. Folk, J. E., K. A. Piez, W. R. Carrol, and J. A. Gladner. 1960. Carboxypeptidase B purification and characterization of the porcine enzyme. J. Biol. Chem. 235: 2271-2277
  13. Hong, I. P., S. Anderson, and S. G. Choi. 2006. Evaluation of a new episomal vector based on the GAP promoter for structural genomics in Pichia pastoris. J. Microbiol. Biotechnol. 16: 1362-1368
  14. Huang, H., C. P. Reed, J. S. Zhang, V. Shridhar, L. Wang, and K. I. Smith. 1999. Carboxypeptidase A3 (CP3); a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cell. Cancer Res. 59: 2981-2988
  15. Jolk, J. E. and J. A. Gladner. 1958. Purification of the zymogen and specificity of the enzyme. J. Biol. Chem. 231: 379-391
  16. Katakura, Y., W. Zhang, G. Zhuang, T. Omasa, M. Kishimoto, Y. Goto, and K. Suha. 1997. Effect of methanol concentration on the production of human $\beta$2-glycoprotein I domain V by recombinant P. pastoris: A simple system for the control of methanol concentration using a semi-conductor gas sensor. J. Ferment. Bioeng. 86: 482-487 https://doi.org/10.1016/S0922-338X(98)80156-6
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Latchinian-Sadek, L. and D. Y. Thomas. 1993. Expression, purification, and characterization of the yeast KEX1 gene product, a polypeptide precursor processing carboxypeptidase. J. Biol. Chem. 268: 534-540
  19. Lee, J. L., C. S. Park, and H. Y. Kim. 2007. Functional assembly of recombinant human ferritin subunits in Pichia pastoris. J. Microbiol. Biotechnol. 17: 1695-1699
  20. Lim, J. M., S. K. Kim, S. M. Park, and S. W. Nam. 2002. High-level expression of Aspergillus ficuum acetyl xylan esterase gene in Pichia pastoris. Kor. J. Microbiol. Biotechnol. 30: 305-311
  21. Markvicheva, E. A., S. V. Kuptsova, T. Y. Mareeva, A. A. Vikhrov, T. N. Dugina, and S. M. Strukova. 2000. Immobilized enzyme and cells in poly (N-vinyl caprolactam)-based hydrogels: Preparation, properties, and applications in biotechnology and medicine. Appl. Biochem. Biotechnol. 88: 145-157 https://doi.org/10.1385/ABAB:88:1-3:145
  22. Reverter, D., S. Ventura, V. Villegas, J. Vendrell, and F. X. Avilés. 1998. Overexpression of human procarboxypeptidase A2 in Pichia pastoris and detailed characterization of its activation pathway. J. Biol. Chem. 273: 3535-3541 https://doi.org/10.1074/jbc.273.6.3535
  23. Springman, E. B. 1998. Mast cell carboxypeptidase B, pp. 1331-1335. In B. Alan and J. Woessner (eds.), Handbook of Proteolytic Enzyme. Academic Press, Elsevier, New York
  24. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76: 4350-4354 https://doi.org/10.1073/pnas.76.9.4350
  25. Ventura, S., V. Villegas, J. Sterner, J. Larson, J. Vendrell, C. L. Hershberger, and F. X. Avilés. 1999. Mapping the pro-region of carboxypeptidase B by protein engineering. Cloning, overexpression, and mutagenesis of the porcine proenzyme. J. Biol. Chem. 274: 19925-19933 https://doi.org/10.1074/jbc.274.28.19925
  26. Villegas, V., J. Vendrell, and F. X. Aviles. 1995. The activation pathway of procarboxypeptidase B from porcine pancreas: Participation of the active enzyme in the proteolytic processing. Protein Sci. 4: 1792-1900 https://doi.org/10.1002/pro.5560040914
  27. Wang, D. J., L. Miao, H. Chen, Y. Y. Li, H. P. Chen, and H. Q. Fang. 2007. Expression, purification and characterization of rat procarboxypeptidase B in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 23: 61-66
  28. Wintersberger, E., D. J. Cox, and H. Neurath. 1962. Bovine pancreatic procarboxypeptidase B: Isolation, properties, and activation. Biochemistry 1: 1069-1078 https://doi.org/10.1021/bi00912a017

Cited by

  1. Overexpression, Purification, and Functional Characterization of the Group II Chaperonin from the Hyperthermophilic Archaeum Pyrococcus horikoshii OT3 vol.14, pp.5, 2008, https://doi.org/10.1007/s12257-009-0008-0
  2. Probing of C‐terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media vol.109, pp.9, 2008, https://doi.org/10.1002/bit.24510
  3. Production of Salmosin, a Snake Venom-derived Disintegrin, in Recombinant Pichia pastoris Using High Cell Density Fed-batch Fermentation vol.17, pp.5, 2012, https://doi.org/10.1007/s12257-011-0647-9
  4. Construction of an expression system for the secretory production of recombinant α-agarase in yeast vol.34, pp.6, 2008, https://doi.org/10.1007/s10529-012-0864-0
  5. Enhanced protein production by sorbitol co-feeding with methanol in recombinant Pichia pastoris strains vol.22, pp.6, 2017, https://doi.org/10.1007/s12257-017-0011-9
  6. Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast vol.29, pp.4, 2008, https://doi.org/10.4014/jmb.1902.02012