DOI QR코드

DOI QR Code

Involvement of ${\beta}$-Lactamase Inhibitory Protein, BLIP-II, in Morphological Differentiation of Streptomyces exfoliatus SMF19

  • Kim, Eun-Sook (School of Biological Sciences, Seoul National University) ;
  • Song, Ju-Yeon (School of Biological Sciences, Seoul National University) ;
  • Kim, Dae-Wi (School of Biological Sciences, Seoul National University) ;
  • Ko, Eun-Ji (School of Biological Sciences, Seoul National University) ;
  • Jensen, Susan E. (Department of Biological Sciences, University of Alberta) ;
  • Lee, Kye-Joon (School of Biological Sciences, Seoul National University)
  • Published : 2008.12.31

Abstract

The ${\beta}$-lactamase inhibitory protein, BLIP-II, found in the culture supernatant of Streptomyces exfoliatus SMF19, shows no discernible sequence identity with other ${\beta}$-lactamase inhibitory proteins identified in Streptomyces spp. A null mutant of the gene encoding BLIP-II (bliB::$hyg^r$) showed a bald appearance on solid media. Although BLIP-II was initially isolated from the supernatant of submerged cultures, sites of BLIP-II accumulation were seen in the cell envelope. Mutation of bliB was also associated with changes in the formation of septa and condensation of the chromosomal DNA associated with sporulation. The bliB mutant exhibited infrequent septa, showing dispersed chromosomal DNA throughout the mycelium, whereas the condensed chromosomes of the wild-type were separated by regularly spaced septa giving the appearance of a string of beads. Therefore, on the basis of these results, it is suggested that BLIP-II is a regulator of morphological differentiation in S. exfoliatus SMF19.

Keywords

References

  1. Blazquez, J., M. R. Baquero, R. Canton, I. Alos, and F. Baquero. 1993. Characterization of a new TEM-type $\beta$-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37: 2059-2063 https://doi.org/10.1128/AAC.37.10.2059
  2. Brown, A. G., D. Butterworth, M. Cole, G. Hanscomb, J. D. Hood, C. Reading, and G. N. Rolinson. 1976. Naturally-occurring $\beta$-lactamase inhibitors with antibacterial activity. J. Antibiot. 29: 668-669 https://doi.org/10.7164/antibiotics.29.668
  3. Butterworth, D., M. Cole, G. Hanscomb, and G. N. Rolinson. 1979. Olivanic acids, a family of $\beta$-lactam antibiotics with $\beta$-lactamase inhibitory properties produced by Streptomyces species. I. Detection, properties and fermentation studies. J. Antibiot. 32: 287-294 https://doi.org/10.7164/antibiotics.32.287
  4. Cole, C. N. and C. M. Hammell. 1998. Nucleocytoplasmic transport: Driving and directing transport. Curr. Biol. 8: R368-R372 https://doi.org/10.1016/S0960-9822(98)70239-8
  5. Doran, J. L., B. K. Leskiw, S. Aippersbach, and S. E. Jensen. 1990. Isolation and characterization of a $\beta$-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J. Bacteriol. 172: 4909-4918 https://doi.org/10.1128/jb.172.9.4909-4918.1990
  6. Gordon, G. B., L. R. Miller, and K. G. Bensch. 1963. Fixation of tissue culture cells for ultrastructural cytochemistry. Exp. Cell Res. 31: 440-443 https://doi.org/10.1016/0014-4827(63)90024-7
  7. Kahan, J. S., F. M. Kahan, R. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, et al. 1979. Thienamycin, a new $\beta$- lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiot. 32: 1-12 https://doi.org/10.7164/antibiotics.32.1
  8. Kang, S. G., H. U. Park, H. S. Lee, H. T. Kim, and K. J. Lee. 2000. New $\beta$-lactamase inhibitory protein (BLIP-I) from Streptomyces exfoliatus SMF19 and its roles on the morphological differentiation. J. Biol. Chem. 275: 16851-16856 https://doi.org/10.1074/jbc.M000227200
  9. Kelly, J. A., O. Dideberg, P. Charlier, J. P. Wery, M. Libert, P. C. Moews, et al. 1986. On the origin of bacterial resistance to penicillin: Comparison of a $\beta$-lactamase and a penicillin target. Science 231: 1429-1431 https://doi.org/10.1126/science.3082007
  10. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich
  11. Kim, M. K., H. I. Kang, and K. J. Lee. 1991. Purification and characterization of proteinaceous $\beta$-lactamase inhibitor from the culture broth of Streptomyces sp. SMF19. J. Microbiol. Biotechnol. 1: 85-89
  12. Kim, M. K. and K. J. Lee. 1994. Characteristics of $\beta$-lactamase inhibiting proteins from Streptomyces exfoliatus SMF19. Appl. Environ. Microbiol. 60: 1029-1032
  13. Lim, D., H. U. Park, L. De Castro, S. G. Kang, H. S. Lee, S. Jensen, K. J. Lee, and N. C. Strynadka. 2001. Crystal structure and kinetic analysis of $\beta$-lactamase inhibitor protein-II in complex with TEM-1 $\beta$-lactamase. Nat. Struct. Biol. 8: 848-852 https://doi.org/10.1038/nsb1001-848
  14. Matsumoto, T. and D. Beach. 1991. Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66: 347-360 https://doi.org/10.1016/0092-8674(91)90624-8
  15. Moore, J. D. 2001. The Ran-GTPase and cell-cycle control. Bioessays 23: 77-85 https://doi.org/10.1002/1521-1878(200101)23:1<77::AID-BIES1010>3.3.CO;2-5
  16. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257: 1064-1073 https://doi.org/10.1126/science.257.5073.1064
  17. Ohtsubo, M., R. Kai, N. Furuno, T. Sekiguchi, M. Sekiguchi, H. Hayashida, et al. 1987. Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev. 1: 585-593 https://doi.org/10.1101/gad.1.6.585
  18. Park, H. U. and K. J. Lee. 1998. Cloning and heterologous expression of the gene for BLIP-II, a $\beta$-lactamase-inhibitory protein from Streptomyces exfoliatus SMF19. Microbiology 144: 2161-2167 https://doi.org/10.1099/00221287-144-8-2161
  19. Petrosino, J., C. Cantu, 3rd. and T. Palzkill. 1998. $\beta$-lactamases: Protein evolution in real time. Trends Microbiol. 6: 323-327 https://doi.org/10.1016/S0966-842X(98)01317-1
  20. Petrosino, J., G. Rudgers, H. Gilbert, and T. Palzkill. 1999. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of $\beta$-lactamases. J. Biol. Chem. 274: 2394-2400 https://doi.org/10.1074/jbc.274.4.2394
  21. Reynolds, K. A., J. M. Thomson, K. D. Corbett, C. R. Bethel, J. M. Berger, J. F. Kirsch, R. A. Bonomo, and T. M. Handel. 2006. Structural and computational characterization of the SHV- 1 $\beta$-lactamase-$\beta$-lactamase inhibitor protein interface. J. Biol. Chem. 281: 26745-26753 https://doi.org/10.1074/jbc.M603878200
  22. Rudgers, G. W. and T. Palzkill. 1999. Identification of residues in $\beta$-lactamase critical for binding $\beta$-lactamase inhibitory protein. J. Biol. Chem. 274: 6963-6971 https://doi.org/10.1074/jbc.274.11.6963
  23. Samraoui, B., B. J. Sutton, R. J. Todd, P. J. Artymiuk, S. G. Waley, and D. C. Phillips. 1986. Tertiary structural similarity between a class A $\beta$-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 320: 378-380 https://doi.org/10.1038/320378a0
  24. Sazer, S. and P. Nurse. 1994. A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J. 13: 606-615
  25. Schwedock, J., J. R. McCormick, E. R. Angert, J. R. Nodwell, and R. Losick. 1997. Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25: 847-858 https://doi.org/10.1111/j.1365-2958.1997.mmi507.x
  26. Strynadka, N. C., S. E. Jensen, K. Johns, H. Blanchard, M. Page, A. Matagne, J. M. Frère, and M. N. James. 1994. Structural and kinetic characterization of a $\beta$-lactamase-inhibitor protein. Nature 368: 657-660 https://doi.org/10.1038/368657a0
  27. Therrien, C. and R. C. Levesque. 2000. Molecular basis of antibiotic resistance and $\beta$-lactamase inhibition by mechanismbased inactivators: Perspectives and future directions. FEMS Microbiol. Rev. 24: 251-262 https://doi.org/10.1111/j.1574-6976.2000.tb00541.x
  28. Wang, J., Z. Zhang, T. Palzkill, and D. C. Chow. 2007. Thermodynamic investigation of the role of contact residues of $\beta$-lactamase-inhibitory protein for binding to TEM-1 $\beta$-lactamase. J. Biol. Chem. 282: 17676-17684 https://doi.org/10.1074/jbc.M611548200

Cited by

  1. Biosynthetic and antimicrobial potential of actinobacteria isolated from bulrush rhizospheres habitat in Zhalong Wetland, China vol.200, pp.5, 2008, https://doi.org/10.1007/s00203-018-1474-6