DOI QR코드

DOI QR Code

Bone-implant contact and mobility of surface-fronted orthodontic micro-implants in dogs

성견에서 표면처리된 교정용 마미크로 임플랜트의 골 접촉률 및 동요도

  • Park, Seung-Hyun (Department of Orthodontics, College of Medicine, The Catholic University of Korea) ;
  • Kim, Seong-Hun (Department of Orthodontics, College of Medicine, The Catholic University of Korea) ;
  • Ryu, Jun-Ha (Department of Orthodontics, College of Medicine, The Catholic University of Korea) ;
  • Kang, Yoon-Goo (Department of Orthodontics, College of Medicine, The Catholic University of Korea) ;
  • Chung, Kyu-Rhim (Department of Orthodontics, College of Medicine, The Catholic University of Korea) ;
  • Kook, Yoon-Ah (Department of Orthodontics, College of Medicine, The Catholic University of Korea)
  • 박승현 (가톨릭대학교 임상치과학대학원 교정과) ;
  • 김성훈 (가톨릭대학교 임상치과학대학원 교정과) ;
  • 류준하 (가톨릭대학교 임상치과학대학원 교정과) ;
  • 강윤구 (가톨릭대학교 임상치과학대학원 교정과) ;
  • 정규림 (가톨릭대학교 임상치과학대학원 교정과) ;
  • 국윤아 (가톨릭대학교 임상치과학대학원 교정과)
  • Published : 2008.12.30

Abstract

The purpose of this study was to evaluate the mobility and ratio of the bone-implant contact (BIC) of a sandblasted, large grit and acid-etched (SLA) orthodontic micro-implant. Methods: Ninety-six micro-implants (48 SLA and 48 machined) were implanted in the upper and lower buccal alveolar bone, and palatal bone of four beagle dogs. Two weeks after surgery, orthodontic force (150-200 g) was applied. Two beagles were sacrificed at 4-weeks and the other two at 12-weeks. Histomorphometric comparisons were made between the SLA experimental group and the machined micro-implant as a control group to determine the ratio of contact between the bone and implant. Micro-implant mobility was also evaluated using $Periotest^{(R)}$. Results: Periotest values showed no statistically significant difference in the upper alveolar and palatal bone between groups except for the lower buccal area. BIC in the upper buccal area showed no significant difference between groups both at 4-weeks and 12-weeks. However, both the groups showed a significant difference in BIC ratio in the rest of the experimental areas between 4 weeks and 12 weeks. The experimental group showed active bone remodeling around the bone-implant interface compared to the control group. Conclusions: There were significant differences in the BIC and the Periotest values between the surface-treated and machined micro-implants according to bone quality in the early stage.

본 연구는 비글견에 식립된 sandblasted, large grit and acid-etched (SLA) 표면처리된 교정용 마이크로임플랜트와 평활면 마이크로임플랜트에 교정력을 가한 후 시간 경과에 따른 동요도와 골접촉률의 차이를 규명하기 위해 시행되었다. 비글 성견 네 마리를 이용하여 상, 하악 협측과 구개측 골에 대해 SLA 표면처리된 표면처리군 48개, 평활면의 비처리군 48개의 마이크로임 플랜트 96개를 식립하고 2주의 치유기간 후 교정력(150 - 200 g)을 지속적 으로 가했으며 식립 4주 후에 두 마리를 희생시키고, 12주 후에 나머지 2마리를 희생시켰다. 표면처리군과 비처리군 간의 마이크로 임플랜트의 동요도와 골과 임플랜트 간 접촉률을 조직학적인 측면에서 측정 비교하여 다음과 같은 결과를 얻었다. 상악 협측과 구개측에서는 표면처리군과 미처리군의 동요도에서 유의성 있는 차이가 없었으나 하악협측에서는 표면 처리군이 유의하게 안정적인 동요도를 보였다. 마이크로임플랜트와 인접골 간 접촉률은 상악 협측에서는 4주와 12주 모두 표면처리군과 미처리군 간에 유의 한 차이가 없었으나 하악 협측과 구개측의 경우 4주와 12주 모두 표면처리군이 비처리군에 비해 유의하게 높은 접촉률을 보였다. 표면처리군은 비처리군에 비해 임플랜트 주변에서 활발한 골개조가 관찰되었으며 모든 군에서 이물반응은 관찰되지 않았다. 본 연구를 통해 SLA 표면처리된 마이크로임플랜트는 평활면 마이크로임플랜트에 비하여 식립 초기에는 식립 부위에 따라 유의하게 높은 인접골 간 접촉률과 동요도의 안정성을 보임으로써 다양한 크기와 방향의 교정력의 적용이 가능할 것이라 생각한다.

Keywords

References

  1. Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthod 1990;60:135-52
  2. Im DH, Kim YS, Cho MA, Kim KS, Yang SE. Interdisplinary treatment of Class III malocclusion using mini-implant: problem-oriented orthodontic treatment. Korean J Orthod 2007;37:305-14
  3. Park HS. The skeletal cortical anchorage using titanium microscrew implants. Korean J Orthod 1999;29:699-706
  4. Park HS. A new protocal of the sliding mechanics with Micro- Implant Anchorage (M.I.A). Korean J Orthod 2000;30:677-85
  5. Cordioli G, Majzoub Z, Piatelli A, Scarano A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants 2000;15:668-74
  6. Lim YJ, Oshida Y, Andres CJ, Barco MT. Surface characterizations of variously treated titanium materials. Int J Oral Maxillofac Implants 2001;16:333-42
  7. Cho SA, Park KT. The removal torque of titanium screw inserted in rabbit tibiatreated by dual acid etching. Biomaterials 2003;24:3611-7 https://doi.org/10.1016/S0142-9612(03)00218-7
  8. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 2004;15:381-92 https://doi.org/10.1111/j.1600-0501.2004.01082.x
  9. Lim SA, Cha JY, Hwang CJ. Comparison of insertion torque regarding changes in shape, diameter, and length of orthodontic miniscrews. Korean J Orthod 2007;37:89-97
  10. Song YY, Cha JY, Hwang CJ. Evaluation of insertion torque and Pull-out strength of mini-screws according to different thickness of artificial cortical bone. Korean J Orthod 2007;37:5-15
  11. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999;115:166-74 https://doi.org/10.1016/S0889-5406(99)70345-8
  12. Kyung SH, Lim JK, Park YC. The use of miniscrew as an anchorage for the orthodontic tooth movement. Korean J Orthod 2001;31:415-24
  13. Cho JH. Effects on orthodontic miniscrew implants according to the timing of force application thesis. Seoul: Yonsei University; 2003
  14. Sun SB, Kang YG, Kim SH, Mo SS, Kook YA. Influence of immediate loading on the removal torque value of mini-screws. Korean J Orthod 2007;37:400-6
  15. Chung KR, Kim SH, Kook YA. The C-orthodontic micro- implant. J Clin Orthod 2004;38:478-86
  16. Oh NH, Kim SH, Kook YA, Lee KH, Kang YG, Mo SS. Removal torque of sandblasted large grit, acid etched treated mini-implant. Korean J Orthod 2006;36:324-30
  17. Maino BG, Bednar J, Pagin P, Mura P. The spider screw for skeletal anchorage. J Clin Orthod 2003;37:90-7
  18. Yoon BS, Choi BH, Lee YU, Kim KN, Shim HB, Park JH. A study on Titaniuim Miniscrew as Orthodontic Anchorage; An experimental investigation in dogs. Korean J Orthod 2001;31:517-23
  19. Lim JW, Kim WS, Kim IK, Son CY, Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korean J Orthod 2003;33:11-20
  20. Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofacial Orthop 2005;127:307-13 https://doi.org/10.1016/j.ajodo.2003.12.023
  21. Kim SH, Cho JH, Chung KR, Kook YA, Nelson G. Evaluation of the removal torque values of surface-treated mini-implants after loading. Am J Orthod Dentofacial Orthop 2008;134:36-43 https://doi.org/10.1016/j.ajodo.2006.07.038
  22. Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2005;128:190-4 https://doi.org/10.1016/j.ajodo.2004.01.030
  23. Gurgel BC, Goncalves PF, Pimentel SP, Nociti FH, Sallum EA, Sallum AW, et al. An oxidized implant surface may improve bone-to-implant contact in pristine bone and bone defects treated with guided bone regeneration: an experimental study in dogs. J Periodontol 2008;79:1225-31 https://doi.org/10.1902/jop.2008.070529
  24. Iamoni F, Rasperini G, Trisi P, Simion M. Histomorphometric analysis of a half hydroxyapatite-coated implant in humans: a pilot study. Int J Oral Maxillofac Implants 1999;14:729-35
  25. Sennerby L, Thomsen P, Ericson LE. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int J Oral Maxillofac Implants 1992;7:62-71
  26. Costa A, Raffaini M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthod Orthognath Surg 1998;13:201-9
  27. Melsen B, Verna C. A rational approach to orthodontic anchorage. Prog Orthod 1999;1:10-22 https://doi.org/10.1034/j.1600-9975.2000.d01-4.x

Cited by

  1. 즉시 부하 교정용 미니임플랜트의 안정성 평가를 위한 Periotest$^{(R)}$의 유효성 vol.40, pp.3, 2008, https://doi.org/10.4041/kjod.2010.40.3.167
  2. The effects of different pilot-drilling methods on the mechanical stability of a mini-implant system at placement and removal: a preliminary study vol.41, pp.5, 2008, https://doi.org/10.4041/kjod.2011.41.5.354
  3. Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length vol.41, pp.6, 2011, https://doi.org/10.4041/kjod.2011.41.6.423