DOI QR코드

DOI QR Code

Cortical bone thickness and root proximity at mandibular interradicular sites: implications for orthodontic mini-implant placement

하악의 교정용 미니 임플랜트 식립 부위에서의 피질골 두께와 치근간 거리: 3차원으로 재구성한 CT 영상을 이용한 연구

  • Lim, Ju-Eun (Department of Orthodontics, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Lim, Won-Hee (Department of Orthodontics, School of Dentistry, Seoul National University) ;
  • Chun, Youn-Sic (Department of Orthodontics, Graduate School of Clinical Dentistry, Ewha Womans University)
  • 임주은 (이화여자대학교 임상치의학대학원) ;
  • 임원희 (서울대학교 치의학전문대학원 치과교정학교실) ;
  • 전윤식 (이화여자대학교 임상치의학대학원)
  • Published : 2008.12.30

Abstract

Objective: The purpose of this study was to provide clinical guidelines to indicate the best location for mini-implants as it relates to the cortical bone thickness and root proximity. Methods: CT images from 14 men and 14 women were used to evaluate the buccal interradicular cortical bone thickness and root proximity from mesial to the central incisor to the 2nd molar. Cortical bone thickness was measured at 4 different angles including $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$. Results: There was a statistically significant difference in cortical bone thickness between the second premolar/first permanent molar site, central incisor/central incisor site, between the first/second permanent molar site and in the anterior region. A statistically significant difference in cortical bone thickness was also found when the angulation of placement was increased except for the 2 mm level from the alveolar crest. Interradicular spaces at the 1st/2nd premolar, 2nd premolar/1st permanent molar and 1st/2nd permanent molar sites are considered to be wide enough for mini-implant placement without root damage. Conclusions: Given the limits of this study, mini-implants for orthodontic anchorage may be well placed at the 4 and 6 mm level from the alveolar crest in the posterior region with a $30^{\circ}$ and $45^{\circ}$ angulation upon placement.

교정용 미니 임플랜트의 식립 부위에 대한 연구는 주로 구치부 치근사이 공간에 집중되어 왔다. 본 연구의 목적은 전치에서 구치에 이르는 치아간의 피질골 두께와 치근간 거리를 측정함으로써 교정용 미니 임플랜트 식립 시에 참고 할 수 있는 임상적 지침을 제공하는 것이다 연구를 위해 성인 28명(남자 14명, 여자 14명)의 CT를 V-works $4.0^{TM}$을 이용하여 3차원 영상으로 전환하였다. 중절치에서 제2대구치에 이르는 모든 치아 사이를 치간 접촉점을 지나면서 교합 평면에 수직이 되도록 잘라 $90^{\circ}$ 단면을 형성한 후 치조정으로부터 높이를 달리하여 0, 15, 30, $45^{\circ}$의 각도를 주어 피질골의 두께를 측정하였다. 또한 치조정으로부터 2, 4, 6 mm 높이에서 교합 평면에 평행하게 잘라 $90^{\circ}$ 단면을 만든 후 치근간 거리를 측정하였다. 피질골의 두께는 전 치부에서 구치부로 갈수록 두꺼워지는 경향을 보였으며, 5-6과 1-1 사이, 6-7과 1-1, 1-2, 2-3 사이에서는 유의한 차이를 보였다 (p < 0.05). 치조정으로부터 2 mm 높이를 제외한 대부분의 위치에서 각도가 증가함에 따라 피질골의 두께가 급격히 증가하는 경향을 보였고, 4 - 6 mm 높이에 식립시 $30-45^{\circ}$ 이상의 각도를 부여해야 피질골 보유량(engage 양)에 유의한 차이를 보였다. 치근간 거리 측정 결과 4-5, 5-6, 6-7 사이가 치근 손상 없이 미니 임플랜트를 식립하기에 적절한 위치라고 볼 수 있었고, 1-1과 1-2 사이는 미니 임플랜트 식립을 위한 충분한 치근간 거리를 제공하지 못하는 것으로 나타났다. 본 실험의 결과로 볼 때 피질골과 미니임플랜트의 접촉면을 증가시키기 위해서는 치조정에서 치근단부로 4와 6 mm 되는 부위에서 $30^{\circ}$ 또는 $45^{\circ}$로 식립하는 것이 유리할 것으로 보인다.

Keywords

References

  1. Kim HJ, Yun HS, Park HD, Kim DH, Park YC. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofacial Orthop 2006;130:177-82 https://doi.org/10.1016/j.ajodo.2004.12.024
  2. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373-8 https://doi.org/10.1016/S0889-5406(03)00565-1
  3. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop 2006;129:721
  4. Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop 2007;131(suppl):68S-73S https://doi.org/10.1016/j.ajodo.2006.06.017
  5. Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthod 1990;60:135-52
  6. Kang S, Lee SJ, Ahn SJ, Heo MS, Kim TW. Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am J Orthod Dentofacial Orthop 2007;131(suppl):74S-81S
  7. Park YC, Kim JK, Lee JS. Atlas of contemporary orthodontics. Volume III. Seoul: Shinheung international; 2005. p. 19, 21-3, 145, 159, 178-87
  8. Park HS. An anatomical study using CT images for the implantation of micro-implants. Korean J Orthod 2002;32:435-41
  9. Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop 2007;131(suppl):43S-51S https://doi.org/10.1016/j.ajodo.2006.04.027
  10. Youn HK. Evaluation of interdental space of maxillary posterior area for orthodontic mini-implant using Cone beam CT thesis. Seoul: Catholic University of Korea; 2006
  11. Kyung HM, Park HS, Bae SM, Sung JH, Kim IB. Development of orthodontic micro-implants for intraoral anchorage. J Clin Orthod 2003;37:321-8
  12. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 2000;3:23-8 https://doi.org/10.1034/j.1600-0544.2000.030105.x
  13. Lee SK, Lim WH, Chun YS. Quantitative evaluation of cortical bone and soft tissue thickness in mandible. Korean J Orthod 2007;37:212-9
  14. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006;130:18-25 https://doi.org/10.1016/j.ajodo.2004.11.032
  15. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano- Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 2007;131:9-15 https://doi.org/10.1016/j.ajodo.2005.02.032
  16. Masumoto, Hayashi I, Kawamura A, Tanaka K, Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. Eur J Orthod 2001;23:15-23 https://doi.org/10.1093/ejo/23.1.15
  17. Costa A, Pasta G, Bergamaschi G. Intraoral hard and soft tissue depths for temporary anchorage devices. Semin Orthod 2005;11:10-5 https://doi.org/10.1053/j.sodo.2004.11.003
  18. Lim WH, Lee SK, Wikesjo UM, Chun YS. A descriptive tissue evaluation at maxillary interradicular sites: implications for orthodontics mini-implant placement. Clin Anat 2007;20:760-5 https://doi.org/10.1002/ca.20513
  19. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 2008;78:387-95 https://doi.org/10.2319/122106-52.1
  20. Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol 2008;37:80-93 https://doi.org/10.1259/dmfr/31349994
  21. Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol 2008;37:10-7 https://doi.org/10.1259/dmfr/14140281
  22. Choi SC, Ann CH, Choi HM, Heo MS, Lee SS. Accuracy of reformatted CT image for measuring the pre-implant site: analysis of the image distortion related to the gantry angle change. Dentomaxillofac Radiol 2002;31:273-7 https://doi.org/10.1038/sj.dmfr.4600702

Cited by

  1. Effects of orthodontic mini-implant position in the dragon helix appliance on tooth displacement and stress distribution: a three-dimensional finite element analysis vol.41, pp.3, 2008, https://doi.org/10.4041/kjod.2011.41.3.191