Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization

  • Kim, Byung-Chul (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
  • Published : 2008.12.31

Abstract

High impact polystyrene (HIPS)/organoclay nanocomposites via in situ polymerization were synthesized and their rheological properties were investigated. For the study, two types of organoclays were used: a commercially available organoclay, Cloisite 10A (C10A), and a laboratory-prepared organoclay having a reactant group, vinylclay (ODVC). The X-ray diffraction and transmission electron microscopy experiments revealed that the HIPS/ODVC nanocomposite achieved an exfoliated structure, whereas the HIPS/C10A nanocomposite achieved an intercalated structure. In the small-amplitude oscillatory shear experiments, both storage modulus and complex viscosity increased with increasing organoclay. A pronounced effect of the organoclay content was observed, resulting in larger storage modulus and stronger yield behavior in the low frequency region when compared to neat HIPS. The crossover frequencies associated with the inverse of a longest relaxation time decreased as the organoclay content increased. Over a certain value of ODVC content, a change of pattern in rheological properties could be found, indicating a solid-like response with storage modulus greater than loss modulus at all frequencies.

Keywords

References

  1. Akelah, A. and A. Moet, 1996, Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers, J. Mater. Sci. 31, 3589-3596 https://doi.org/10.1007/BF00360767
  2. Alexandre, M. and P. Dubois, 2000, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. 28, 1-63 https://doi.org/10.1016/S0927-796X(00)00012-7
  3. Cervantes-Uc, J. M., J. V. Cauich-Rodriguez, J. Vazquez-Torres, L. F. Garfias-Mesias and D. R. Paul, 2007, Thermochimica Acta 457, 92-102 https://doi.org/10.1016/j.tca.2007.03.008
  4. Doh, J. G. and I. Cho, 1998, Synthesis and properties of polystyrene- organoammonium montmorillonite hybrid, Polymer Bulletin 41, 511-518 https://doi.org/10.1007/s002890050395
  5. Fu, X. and S. Qutubuddin, 2001, Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene, Polymer 42, 807-813 https://doi.org/10.1016/S0032-3861(00)00385-2
  6. Gelfer, M. Y., H. H. Song, L. Liu, B. S. Hsiao, B. Chu, M. Rafailovich, M. Si and V. Zaitsev, 2003, Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends, J. Polym. Sci. Part B: Polym. Phys. 41, 44-54 https://doi.org/10.1002/polb.10360
  7. Giannelis, E. P., 1996, Polymer layered silicate nanocomposites, Adv. Mater. 8, 29-35 https://doi.org/10.1002/adma.19960080104
  8. Hoffmann, B., C. Dietrich, R. Thomann, C. Friedrich and R. Mulhaupt, 2000, Morphology and rheology of polystyrene nanocomposites based upon organoclay, Macromol. Rapid Commun. 21, 57-61 https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E
  9. Kim, K. Y., H. J. Lim, S. M. Park and S. J. Lee, 2003, Synthesis and characterization of high impact polystyrene/organically modified layered silicate nanocomposites, Polymer (Korea) 27, 377-384
  10. Krishnamoorti, R. and E. P. Giannelis, 1997, Rheology of endtethered polymer layered silicate nanocomposites, Macromolecules 30, 4097-4102 https://doi.org/10.1021/ma960550a
  11. Krishnamoorti, R. and K. Yurekli, 2001, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid Interface Sci. 6, 464-470 https://doi.org/10.1016/S1359-0294(01)00121-2
  12. Lee, K. H. and C. D. Han, 2003a, Rheology of organoclay nanocomposites: Effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay, Macromolecules 36, 7165-7178 https://doi.org/10.1021/ma030302w
  13. Lee, K. H. and C. D. Han, 2003b, Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites, Polymer 44, 4573-4588 https://doi.org/10.1016/S0032-3861(03)00444-0
  14. Morgan, A. B. and J. W. Gilman, 2003, Characterization of polymer- layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study, J. Appl. Polym. Sci. 87, 1329-1338 https://doi.org/10.1002/app.11884
  15. Potschke, P., T. D. Fornes and D. R. Paul, 2002, Rheological behaviour of multiwalled carbon nanotube/polycarbonate composites, Polymer 43, 3247-3255 https://doi.org/10.1016/S0032-3861(02)00151-9
  16. Riess, G. and P. Gaillard, 1983, Polymer reaction engineering, Reichert, K. H. and W. Geiseler, Eds., Hanser, New York
  17. Usuki, A., M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito, 1993, Swelling behavior of montmorillonite cation exchanged for ${\omega}-amino$ acids by ${\varepsilon}-caprolactam$, J. Mater. Res. 8, 1174-1178 https://doi.org/10.1557/JMR.1993.1174
  18. Uthirakumar, P., Y. B. Hahn, K. S. Nahm and Y. S. Lee, 2005, Exfoliated high-impact polystyrene/MMT nanocomposites prepared using anchored cationic radical initiator-MMT hybrid, Eur. Polym. J. 41, 1582-1588 https://doi.org/10.1016/j.eurpolymj.2005.01.017
  19. Wagener, R. and T. J. G. Reisinger, 2003, A rheological method to compare the degree of exfoliation of nanocomposites, Polymer 44, 7513-7518 https://doi.org/10.1016/j.polymer.2003.01.001
  20. Zhao, J., A. B. Morgan and J. D. Harris, 2005, Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion, Polymer 46, 8641-8660 https://doi.org/10.1016/j.polymer.2005.04.038