다중벽 탄소나노튜브의 표면처리 방법에 따른 특성비교

Comparison of Characteristics of Multi-walled Carbon Nanotubes Functionalized Using Various Methods

  • 박기룡 (숭실대학교 유기신소재 파이버공학과) ;
  • 김준석 (숭실대학교 유기신소재 파이버공학과) ;
  • 정영진 (숭실대학교 유기신소재 파이버공학과)
  • Park, Gi-Ryoung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jun-Suk (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Young-Jin (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 발행 : 2008.12.31

초록

Functional groups on multi-walled carbon nanotubes (MWNTs) were introduced by UV/ozone treatment, reacting with $HNO_3$ alone or with $H_2SO_4/HNO_3$ mixture followed by drying under different conditions. The resulting MWNTs were characterized using a UV-visible spectrometer, SEM, FT-IR, elemental analyzer, and TGA. The amount of oxygen was measured with elemental analyzer and used to check the degree of functionalization on the MWNT surface. Among the various methods tested, the one using $H_2SO_4/HNO_3$ introduced highest amount of carboxyl groups on the carbon nanotubes, while it damaged the MWNTs. Also, even with the similar amount of functional groups, dispersibility of the functionalized MWNTs in water was differed according to the functionalization method. The carbon nanotubes functionalized by reacting with $H_2SO_4/HNO_3$ started to degrade at lower temperature than the ones treated by other methods, which was due to the defects introduced during functionalization.

키워드

참고문헌

  1. L. V. Radushkevich and V. M. Lukyanovich, "O Structure Ugleroda, Obrazujucegosja Pri Termiceskom Razlozenii Okisi Ugleroda Na Zeleznom Kontakte", Zurn Fisic Chim, 1952, 26, 88-95
  2. A. Oberlin, M. Endo, and T. Koyama, "Filamentous Growth of Carbon through Benzene Decomposition", J Crystal Growth, 1976, 32, 335-347 https://doi.org/10.1016/0022-0248(76)90115-9
  3. S. Iijima, "Smallest Carbon Nanotube", Nature, 1991, 354, 56-58 https://doi.org/10.1038/354056a0
  4. A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, "Crystalline Ropes of Metallic Carbon Nanotubes", Science, 1996, 273, 483-487 https://doi.org/10.1126/science.273.5274.483
  5. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, "Carbon Nanotubes-the Route Toward Applications", Science, 2002, 297, 787-792 https://doi.org/10.1126/science.1060928
  6. J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, "Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode", J Am Chem Soc, 2001, 123, 6536-6542 https://doi.org/10.1021/ja010462s
  7. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, "Rheological and Electrical Properties of Polycarbonate/multi-walled Carbon Nanotube Composites", Polymer, 2006, 47, 4434-4439 https://doi.org/10.1016/j.polymer.2006.04.008
  8. I. Kang, Y. Y. Heung, J. H. Kim, J. W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G. R. Kirikera, V. Shanov, M. J. Schulz, D. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren, "Introduction to Carbon Nanotube and Nanofiber Smart Materials", Composites: Part B, 2006, 37, 382-394 https://doi.org/10.1016/j.compositesb.2006.02.011
  9. G. Jiang, L. Wang, C. Chen, X. Dong, T. Chen, and H. Yu, "Study on Attachment of Highly Branched Molecules onto Multiwalled Carbon Nanotubes", Materials Letters, 2005, 59, 2085-2089 https://doi.org/10.1016/j.matlet.2005.01.085
  10. H. M. Huang, I. C. Liu, C. Y. Chang, H. C. Tsai, C. H. Hsu, and R. C. Tsiang, "Preparing a Polystyrene-Functionalized Multiple-Walled Carbon Nanotubes via Covalently Linking Acyl Chloride Functionalities with Living Polystyryllithium", J Polym Sci: Part A, 2004, 42, 5802-5810 https://doi.org/10.1002/pola.20424
  11. G. X. Chen, H. S. Kim, B. H. Park, and J. S. Yoon, "Controlled Functionalization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(L-lactic acid)", J Phys Chem B, 2005, 109, 22237-22243 https://doi.org/10.1021/jp054768n
  12. Y. Wang, Z. Iqbal, and S. Mitra, "Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Comcentration", J Am Chem Soc, 2006, 128, 95-99 https://doi.org/10.1021/ja053003q
  13. L. Chen, X. J. Pang, Q. T. Zhang, and Z. L. Yu, "Cutting of Carbon Nanotubes by a Two-roller Mill", Materials Letters, 2006, 60, 241-244 https://doi.org/10.1016/j.matlet.2005.08.024
  14. E. Najafi, J. Y. Kim, S. H. Han, and K. Shin, "UV-ozone Treatment of Multi-walled Carbon Nanotubes for Enhanced Organic Solvent Dispersion", Collids and Surfaces A, 2006, 284-285, 373-378
  15. M. L. Sham and J. K. Kim, "Surface Functionalities of Multi-wall Carbon Nanotubes after UV/ozone and TETA Treatments", Carbon, 2006, 44, 768-777 https://doi.org/10.1016/j.carbon.2005.09.013
  16. C. E. Hong, J. H. Lee, P. Kalappa, and S. G. Advani, "Effects of Oxidative Conditions on Properties of Multiwalled Carbon Nanotubes in Polymer Nanocomposites", Compos Sci Technol, 2007, 67, 1027-1034 https://doi.org/10.1016/j.compscitech.2006.06.003
  17. G. W. Lee, J. S. Kim, J. H. Yoon, J. S. Bae, B. C. Shin, I. S. Kim, W. Oh, and M. Ree, "Structural Characterization of Carboxylated Multi-walled Carbon Nanotubes", Thin Solid Films, 2008, 516, 5781-5784 https://doi.org/10.1016/j.tsf.2007.10.071
  18. http://en.wikipedia.org/wiki/Beer-Lambert_law