Algorithm for Computing J Relations in the Monoid of Boolean Matrices

불리언 행렬의 모노이드에서의 J 관계 계산 알고리즘

  • 한재일 (국민대학교 전자정보통신대학 컴퓨터공학부)
  • Published : 2008.12.31

Abstract

Green's relations are five equivalence relations that characterize the elements of a semigroup in terms of the principal ideals. The J relation is one of Green's relations. Although there are known algorithms that can compute Green relations, they are not useful for finding all J relations in the semigroup of all $n{\times}n$ Boolean matrices. Its computation requires multiplication of three Boolean matrices for each of all possible triples of $n{\times}n$ Boolean matrices. The size of the semigroup of all $n{\times}n$ Boolean matrices grows exponentially as n increases. It is easy to see that it involves exponential time complexity. The computation of J relations over the $5{\times}5$ Boolean matrix is left an unsolved problem. The paper shows theorems that can reduce the computation time, discusses an algorithm for efficient J relation computation whose design reflects those theorems and gives its execution results.

Keywords

References

  1. 김창범, 한재일, "Classifications of D-classes in the semigroup Mn(F) of all n x n Boolean matrices over F = {0, 1}", 퍼지 및 지능시스템학회 논문지, 제16권, 제3호(2006), pp.338-348 https://doi.org/10.5391/JKIIS.2006.16.3.338
  2. 한재일, "모든 l x n, n x m, m x k 불리언 행렬 사이의 중첩곱셈에 대한 연구", 한국IT서비스학회지, 제5권, 제1호(2006), pp.191-198
  3. 한재일, "효율적인 D-클래스 계산을 위한 알고리즘", 한국IT서비스학회지, 제6권, 제1호(2007), pp.151-158
  4. Howie, J. M., An Introduction to semigroup theory, Oxford University Press, 1995
  5. Linton, S. A., G. Pfeiffer, E. F. Robertson, and N. Ruskuc, "Computing Transformation Semigroups", Journal of Symbolic Computation, Vol.33(2002), pp.145-162 https://doi.org/10.1006/jsco.2000.0406
  6. Wall, J. R., "Green's relations for stochastic matrices", Czechoslovak Mathematical Journal, Vol.25, No.2(1975), pp.247-260
  7. Heyworth, A., "One-Sided Noncommutative Grobner Bases with Applications to Computing Green's Relations", Journal of Algebra, Vol.242(2001), pp.401-416 https://doi.org/10.1006/jabr.2001.8801
  8. Lee, L., "Fast context-free grammar parsing require fast Boolean matrix multiplication", JACM, Vol.49, No.1(2002), pp.1-15 https://doi.org/10.1145/505241.505242
  9. Yi, X., et al., "Fast Encryption for Multimedia", IEEE Transactions on Consumer Electronics, Vol.47, No.1(2001), pp.101-107 https://doi.org/10.1109/30.920426
  10. Martin, D. F., "A Boolean matrix method for the computation of linear precedence functions", CACM, Vol.15, No.6(1972), pp. 448-454 https://doi.org/10.1145/361405.361413
  11. Nakamura, Y. and Yoshimura T., "A partitioning- based logic optimization method for large scale circuits with Boolean matrx", Proceedings of the 32nd ACM/IEEE conference on Design automation, 1995, pp. 653-657
  12. Pratt, V. R., "The Power of Negative Thinking in Multiplying Boolean matrices", Proceedigs of the annual ACM symposium on Theory of computing, 1974, pp.80-83
  13. Rim, D. S. and Kim, J. B., "Tables of D-Classes in the semigroup B of the binary relations on a set X with n-elements", Bull. Korea Math. Soc., Vol.20, No.1(1983), pp.9-13
  14. Atkinson, D. M., Santoro, N., and Urrutia, J., "On the integer complexity of Boolean matrix multiplication", ACM SIGACT News, Vol.18, No.1(1986), p.53 https://doi.org/10.1145/8312.8316
  15. Yelowitz, L., "A Note on the Transitive Closure of a Boolean Matrix", ACM SIGMOD Record, Vol.25, No.2(1978), p.30
  16. Comstock, D. R., "A note on multiplying Boolean matrices II", CACM, Vol.7, No.1 (1964), p.13 https://doi.org/10.1145/363872.363891
  17. Macii, E., "A Discussion of Explicit Methods for Transitive Closure Computation Based on Matrix Multiplication", 29th Asilom Conference on Signals, Systems and Computers, Vol.2(1995), pp.799-801
  18. Angluin, D., "The four Russians'algorithm for boolean matrix multiplication is optimal in its class", ACM SIGACT News, Vol.8, No.1(1976), pp.29-33 https://doi.org/10.1145/1008591.1008593
  19. Booth, K. S., "Boolean matrix multiplication using only bit operations", ACM SIGACT News, Vol.9, No.3(1977), p.23 https://doi.org/10.1145/1008361.1008362
  20. Cousineau, G., J. F. Perrot, and J. M. Rifflet, "APL programs for direct computation of a finite semigroup", APL Congres, Vol.73(1973), pp.67-74
  21. Lallement, G., Semigroups and Combinatorial Applications, John Wiley and Sons, New York, 1979
  22. Champarn명, J. M. and G. Hansel, "AUTOMATE, a computing package for automata and finite semigroups", Journal of Symbolic Computation, Vol.12(1991), pp.197-220 https://doi.org/10.1016/S0747-7171(08)80125-3
  23. Sutner, K., "Finite State Machines and Syntatic Semigroups", The Mathematica Journal, Vol.2(1991), pp.78-87
  24. Lallement, G. and R. McFadden, "On the determination of Green's relations in finite transformation semigroups", Journal of Symbolic Computation, Vol.10(1990), pp.481-498 https://doi.org/10.1016/S0747-7171(08)80057-0
  25. Konieczny, J., "Green's equivalences in finite semigroups of binary relations", Semigroup Form, Vol.48(1994), pp.235-252
  26. Plemmons, R. J. and M. T. West, "On the semigroup of binary relations", Pacific Journal of Mathematics, Vol.35(1970), pp.743-753 https://doi.org/10.2140/pjm.1970.35.743
  27. Simon, I., "On semigroups of matrices over the tropical semiring", Informatique Theoriqueet Applications, Vol.28(1994), pp.277-294 https://doi.org/10.1051/ita/1994283-402771
  28. Straubing, H., "The Burnside problem for semigroups of matrices", in Combinatorics on Words, Progress and Perspectives, L. J. Cummings(ed.), Academic Press, (1983), pp.279-295
  29. Froidure, V. and J. Pin, "Algorithms for computing finite semigroups", Foundations of Computational Mathematics, 1997, pp.112-126