Antioxidant and Anti-inflammatory Effect of Angelica Tenuissima in IFN-${\gamma}$/LPS-stimulated Peritoneal Macrophage

IFN-${\gamma}$와 LPS로 자극된 쥐의 복강 대식세포에서 고본(藁本) 메탄올 추출물의 항염증 효과

  • Published : 2008.12.25

Abstract

The objective of this study were to evaluate the antioxidant activity and the anti-inflammatory effects of Angelica tenuissima (AT) which has been used widely as a traditional medicine. The antioxidant activities of AT was tested by DPPH radical scavenging, superoxide anion scavenging and nitric oxide scavenging. AT showed strong antioxidant activity in all experiment. In macrophages nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions and high concentratin of NO is produced by inducible nitric oxide synthase (iNOS). In this study we have examined the inhibition effects of NO by 85% methanol extracts of AT in mouse (C57BL/6) peritoneal macrophage. AT (100, 1000 ${\mu}g/m{\ell}$) suppressed nitric oxide production and iNOS expression without any notable cytotoxicity and it also inhibited the expression of inflammatoryenzymes like cyclooxygenase-2 (COX-2). These data suggest that 85% methanol extracts of AT may possibly be used as antioxidant and anti-inflammatory agent.

Keywords

References

  1. 식품의약품안전청편집부. 대한약전 제8개정 대한약전외 한약(생약)규격집. 서울, 신일상사, p 35, 2005.
  2. 전국한의과대학 본초학교실. 본초학. 서울, 영림사, pp 156-157, 2000.
  3. Hobbs, A.J., Higgs, A., Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39: 191-220, 1999. https://doi.org/10.1146/annurev.pharmtox.39.1.191
  4. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2(10):907-916, 2001. https://doi.org/10.1038/ni1001-907
  5. Luoma, H., Jauhiainen, M., Alakuijala, P., Nevalainen, T. Seven weeks feeding of magnesium and fluoride modifies plasma lipids of hypercholesterolaemic rats in late growth phase. Magnes Res. 11(4):271-282, 1998.
  6. Dusting, G.J. Nitric oxide in coronary artery disease: roles in atherosclerosis, myocardial reperfusion and heart failure. EXS. 76: 33-55, 1996.
  7. Hibbs, JB.Jr., Taintor, R.R., Vavrin, Z., Rachlin, E,M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157(1):87-94, 1988. https://doi.org/10.1016/S0006-291X(88)80015-9
  8. Wang, Y., Marsden, P.A. Nitric oxide synthases: gene structure and regulation. Adv. Pharmacol. 34: 71-90, 1995. https://doi.org/10.1016/S1054-3589(08)61081-9
  9. Duerksen-Hughes, P.J., Day, D.B., Laster, S.M., Zachariades, N.A., Aquino, L., Gooding, L.R. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J. Immunol. 149(6):2114-2122, 1992.
  10. Gyamfi, M.A., Yonamine, M., Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol. 32(6):661-667, 1999. https://doi.org/10.1016/S0306-3623(98)00238-9
  11. Ibrahim, H.R., Hoq, M.I., Aoki, T. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 41(5):631-640, 2007. https://doi.org/10.1016/j.ijbiomac.2007.08.005
  12. Devasagayam, T.P., Tilak, J.C., Boloor, K.K., Sane, K.S., Ghaskadbi, S.S., Lele, R.D. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India. 52: 794-804, 2004.
  13. Tang, C.K., Xu, Q.Y. Effects of neutral oil of Ligusticum sinense Oliv. on anoxia Zhongguo Zhong Yao Za Zhi. 12: 745-746, 764, 1992.
  14. Zhu, Y.P. Chinese Materia Medica Chemistry, Pharmacology and Applications. The Netherlands, Harwood Academic Publishers, pp 72-73, 1998.
  15. Ka, M.H., Choi, E.H., Chun, H.S., Lee, K.G. Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J. Agric Food Chem. 53(10):4124-4129, 2005. https://doi.org/10.1021/jf047932x
  16. Li, H., Wang, Q. Evaluation of free hydroxyl radical scavenging activities of some Chinese herbs by capillary zone electrophoresis with amperometric detection. Anal. Bioanal. Chem. 378(7):1801-1805, 2004. https://doi.org/10.1007/s00216-004-2509-1
  17. Cheng, Z.J., Kuo, S.C., Chan, S.C., Ko, F.N., Teng, C.M. Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim. Biophys. Acta. 1392(2-3):291-299, 1998. https://doi.org/10.1016/S0005-2760(98)00043-5
  18. Nakagawa, T., Yokozawa, T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 40(12):1745-1750, 2002. https://doi.org/10.1016/S0278-6915(02)00169-2
  19. Srinivasan, M., Sudheer, A.R., Menon, V.P. Ferulic Acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40(2):92-100, 2007. https://doi.org/10.3164/jcbn.40.92
  20. Chang, Y.H., Lee, S.T., Lin, W.W. Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J. Cell Biochem. 81(4):715-723, 2001. https://doi.org/10.1002/jcb.1103
  21. Korhonen, R., Lahti, A., Kankaanranta, H., Moilanen, E. Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy. 4(4):471-479, 2005. https://doi.org/10.2174/1568010054526359
  22. Raison, C.L., Capuron, L., Miller, A.H. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27(1):24-31, 2006. https://doi.org/10.1016/j.it.2005.11.006
  23. Yoon, T.G., Byun, B.H., Kwon, T.K., Suh, S.I., Byun, S.H., Kwon, Y.J., Kim, S.C. Inhibitory effect of Farfarae flos water extract on COX-2, iNOS expression and nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells. Korean J. Oriental Physiology & Pathology 18(3):908-913, 2004.
  24. Palmer, R.M., Ashton, D.S., Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 333(6174):664-666, 1988. https://doi.org/10.1038/333664a0
  25. Kubes, P. Inducible nitric oxide synthase: a little bit of good in all of us. Gut. 47(1):6-9, 2000. https://doi.org/10.1136/gut.47.1.6
  26. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Kwon, T.O., Yun, Y.G., Kim, N.Y., Chung, H.T. Inhibitory effects of methanol extract of Cyperus rotundus rhizomes on nitric oxide and superoxide productions by murine macrophage cell line, RAW 264.7 cells. J. Ethnopharmacol. 76(1):59-64, 2001. https://doi.org/10.1016/S0378-8741(01)00221-5
  27. Chiou, W.F., Chou, C.J., Chen, C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 69(6):625-635, 2001. https://doi.org/10.1016/S0024-3205(01)01154-7
  28. Barnes, P.J., Liew, F.Y. Nitric oxide and asthmatic inflammation. Immunol. Today. 16(3):128-130, 1995. https://doi.org/10.1016/0167-5699(95)80128-6
  29. Lowenstein, C.J., Dinerman, J.L., Snyder, S.H. Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120(3):227-237, 1994. https://doi.org/10.7326/0003-4819-120-3-199402010-00009
  30. Kawamata, H., Ochiai, H., Mantani, N., Terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am. J. Chin. Med. 28(2):217-226, 2000. https://doi.org/10.1142/S0192415X0000026X
  31. Lee, B.G., Kim, S.H., Zee, O.P., Lee, K.R., Lee, H.Y., Han, J.W., Lee, H.W. Suppression of inducible nitric oxide synthase expression in RAW 264. 7 macrophages by two beta-carboline alkaloids extracted from Melia azedarach. Eur. J. Pharmacol. 406(3):301-309, 2000. https://doi.org/10.1016/S0014-2999(00)00680-4
  32. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Yun, Y.G., Kwon, T.O., Chung, H.T. Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7 macrophages stimulated with interferon-gamma and lipopolysaccharide. Gen. Pharmacol. 35(1):21-28, 2000. https://doi.org/10.1016/S0306-3623(01)00086-6
  33. Masferrer, J.L., Zweifel, B.S., Manning, P.T., Hauser, S.D., Leahy, K.M., Smith, W.G., Isakson, P.C., Seibert, K. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. U S A. 91(8):3228-3232, 1994.
  34. Hyun, E.A., Lee, H.J., Yoon, W.J., Park, S.Y., Kang, H.K., Kim, S.J., Yoo, E.S. Inhibitory effect of salvia officinalis on the inflammatory cytokines and inducible nitric oxide synthesis in murine macrophage RAW 264.7. Yakhak Hoeji. 48: 159-164, 2004.
  35. Surh, Y.J. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40(8):1091-1097, 2002. https://doi.org/10.1016/S0278-6915(02)00037-6
  36. Lee, A.K., Sung, S.H., Kim, Y.C., Kim, S.G. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br. J. Pharmacol. 139(1):11-20, 2003. https://doi.org/10.1038/sj.bjp.0705231