Hepatoprotective Activity of Salidroside Isolated from Acer Termentosum Max on D-galactosamine Induced Hepatotoxicity in Rats

산겨릅나무에서 분리한 salidroside의 간보호 효과

  • Published : 2008.12.25

Abstract

Acer tegmentosum Max which is one of the specialized wildness medicinal herbs in gangwon province, has been widely used for hepatitis, liver cirrhosis, hepatic cancer, leukemia, diabetes mellitus, renal necrosis and edema, etc. In this study, the antioxidative and hepatoprotective effects of in vitro and in vivo were investigated in order to evaluate the possibility as hepatoprotective agents. Oral administration of methanol and butanol extact of Acer tegmentosum Max to d-galactosamine (D-GaIN) induced experimental liver injured rats was significantly reduced activities of marker enzymes(AST, ALT) and LDH activity in serum. Salidroside(Sal) isolated from the BuOH extract of Acer termentosum Max potenty showed the scavenzing effect on DPPH and inhibitory effect on lipid peroxidation. And significantly decrcease of MDA level in liver and activities of SOD GSH-Px and catalase were significantly improved by the treatment of Sal. Results of this study revealed that Sal could afford a significant protection in the alleviation of D-GaIN-induced hepatocellular injury.

Keywords

References

  1. Bartholomaeus, A., Ahokas, J. Inhibition of P-450 by aucubin: Is the biological activity of aucubin due to its glutaraldehyde-like aglycone. Toxicol. Letters, 80: 75-83, 1995. https://doi.org/10.1016/0378-4274(95)03339-M
  2. Campos, R., Garrido, A., Guerra, R., Valenzuela, A. Acetaminophen hepatotoxicity in rats is attenuated by silybin dihemisuccinate. Progress in Clin. Biol.l Res. pp 375-280, 1988.
  3. Conti, M., Malandrino, S., Magistretti, M.J. Protective activity of silipide on liver damage in rodents. Japan. J. Pharmacol. 60: 315-321, 1992. https://doi.org/10.1254/jjp.60.315
  4. Dubin, M., Groszmann, R.J., Kravetz, D. Effect of silimarin on hepatotoxicity induced by carbon tetrachloride in rats. Medicina, 36: 437-442, 1976.
  5. 김부생, 최종원, 이정규, 천련자 추출물이 간기능에 미치는 영향 (1) - 천련자의 분획이 약물대사효소계 및 담즙분비에 미치는 영향, 생약학회지 24: 63-68, 1993.
  6. 이창복. 대한식물도감. 항문사, 서울, p 552, 1993.
  7. 소배근. 중국본초도감(3권), 여강출판사, 서울, p 193, 1994.
  8. Jang, S.I., Pae, H.O., Choi, B.M., Oh, G.H., Jeong, S., Lee, H.J., Kim, H.Y., Kang, K.H., Yun, Y.G., Kim Y.C., Chung, H.T. Salidroside from Rhodiola sachalinesis protects neuronal PC 12 cells against cytotoxicity induced by amyloid-$\beta$, Immunopharmacol. Immunotoxicol. 25: 295-304, 2003. https://doi.org/10.1081/IPH-120024498
  9. Zhang, Y., Liu, Y. Study on effect of salidroside on lipid peroxidation in oxidative stress in rat hepatic stellate cells. Zhong Yao Cai. 28: 794-796, 2005.
  10. Zhang, X.S., Zhu, B.D., Hung, X.Q., Chen, Y.F. Effect of salidroside on bone marrow cell cycle and expression of apoptosis-related proteins in bone marrow cells of bone marrow depressed anemia mice. Sichuan Da Xue Xue Bao Yi Xue Ban 36: 820-823, 2005.
  11. Wang, S.H., Wang, W.J., Wang, X.F., Chen, W.H. Effect of salidroside on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes. Zhong Xi He Xue Bao 2: 193-195, 2004. https://doi.org/10.3736/jcim20040312
  12. Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 181: 1199-1200, 1958. https://doi.org/10.1038/1811199a0
  13. Yokozawa, T., Dong, E., Wu, L.Z., Oura, H. and Nishioka, I. Antioxidant activity of Wen-Pi-Tang in vitro. Natural Med. 50: 243-246, 1966.
  14. Reitman, S., Frankel, S. A colorimetric method for the detemination of serum Glutamic oxaloacetic acid and Glutamic pyruvic transaminase. Am. J. Clin Phathol. 28: 56-63, 1957. https://doi.org/10.1093/ajcp/28.1.56
  15. Wroblewskin, F., LaDue, J.S. Lactic dehydrogenase activity in blood. Proc. Soc. Exp. Biol. Med. 90: 210-213, 1955.
  16. Mertens, K., Rogiers, V., Vercruysse, A. Measurement of malondialdehyde in cultures of adult rat hepatocytes. Toxic. in Vitro, 7: 439-441, 1993. https://doi.org/10.1016/0887-2333(93)90043-5
  17. Stefan, M., Gudrun, M. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J Biochem., 47: 469-474, 1974. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Wilson, S.R., Zucker, P.A., Huang, R.R.C., Spector, A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc. 111: 5936-5939, 1989. https://doi.org/10.1021/ja00197a065
  19. Abei, H. Catalase in vitro. Methods in Enzymol. 105: 93-127, 1984. https://doi.org/10.1016/S0076-6879(84)05013-8
  20. Lowry, O.H., Rodebrough, N.J. Farr, A.L., Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275, 1951.
  21. Niki, E., Yoshida, Y., Saito, Y., Noguchi, N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 338(1):668-676, 2005. https://doi.org/10.1016/j.bbrc.2005.08.072
  22. Luczaj, W., Skrzydlewska, E. The present-day look at lipid peroxidation. Postepy Biochem. 52(2):173-179, 2006.
  23. Spiteller, G. The important role of lipid peroxidation processes in aging and age dependent diseases. Mol. Biotechnol. 37(1):5-12, 2007. https://doi.org/10.1007/s12033-007-0057-6
  24. Keppler, D., Decker, K. Studies on the mechanism of galactosamine hepatitis; Accumulation of galactosamine I-phosphate and is inhibition of UDP-glucose pyrophosphorylase. Eur. J. Biochem, 10: 219-225, 1969. https://doi.org/10.1111/j.1432-1033.1969.tb00677.x
  25. Decker, K., Keppler, D., Pausch, J. The regulation pyridine nucleotide level and its role in experimental hepatitis. Adv. Enzyme Regul. 11: 205-230, 1973. https://doi.org/10.1016/0065-2571(73)90017-4
  26. Farber, J. L,. GILL, G., Konishi, Y. Prevention of galactosamine- induced liver cell necrosis by uridine. Am. J. Pathol., 72: 53-62, 1973.
  27. Vimal, V., Devaki, T. Hepatoprotective effect of allicin on tissue defense system in galactosamine/ endotoxin challenged rats. J. of Ethnopharm. 90: 151-154, 2004. https://doi.org/10.1016/j.jep.2003.09.027
  28. 임화경, 김학성, 최종원. Bergenin 및 acetylbergenin의 사염화탄소 유발 간독성에 대한 치료효과 I. 응용약물학회지 8: 293-298, 2000.
  29. Terry, D.O., Janice, L,S., Ning, L., Larry, W.O. Antioxidant enzyme levels as a function of growth state in cell culture. Free Radical Bilo. Med. 19: 53-65, 1995. https://doi.org/10.1016/0891-5849(95)00012-M
  30. Shindo, Y., Hashimoto, T. Time course of changes in antioxidant enzymes in human skin fibroblasts afer UV irradiation. J. Dermatol. Sci. 14: 225-232, 1997. https://doi.org/10.1016/S0923-1811(96)00578-6
  31. 김안근, 김지현, 산화적 스트레스 및 항산화제가 항산화효소 활성에 미치는 영향. 응용약물학회지 9: 249-257, 2001.
  32. Gregus, Z., Klaassen, C.D. Mechanisms of toxicity. In casarett and Doull's Toxicology. McgrawHill Com. New York. pp 39-43, 1996.
  33. Cutteridge, J.M.C. Antioxidant properties of the proteins ceruloplasmin, albumin and transferrin. A study of their activity in serum and synocial fluid from patients with rheumatoid arthritis. Biochem. Biophys. Acta, 869: 119-127, 1986. https://doi.org/10.1016/0167-4838(86)90286-4
  34. Braughler, J.M., Chase, R.L., Pregenzer, J.F. Oxidation of ferrous iron during peroxidation of various lipid substance. Biochem. Biophys. Acta, 921: 457-467, 1987. https://doi.org/10.1016/0005-2760(87)90072-5
  35. Yosjikawa, T., Murakami, M., Yoshida, N., Seto, O., Kondo, M. Effects of superoxide dimutase and catalase on disseminated intravascular coagulation in rats. Thromb. Haemostas. 50: 869-872, 1983. https://doi.org/10.1055/s-0038-1665331