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Abstract
A multitude of protein-coding sequence variations (CVs) 
in the human genome have been revealed as a result of 
major initiatives, including the Human Variome Project, 
the 1000 Genomes Project, and the International Cancer 
Genome Consortium. This naturally has led to debate 
over how to accurately assess the functional con-
sequences of CVs, because predicting the functional ef-
fects of CVs and their relevance to disease phenotypes 
is becoming increasingly important. This article surveys 
and compares variation databases and in silico pre-
diction programs that assess the effects of CVs on pro-
tein function. We also introduce a combinatorial ap-
proach that uses machine learning algorithms to im-
prove prediction performance.
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Introduction
Single amino acid substitutions in protein-coding se-
quences are common in the human genome. These pro-
tein-coding sequence variations (CVs) are important di-
agnostic markers and therapeutic targets in genetic dis-
ease studies. Although most CVs are functionally neu-
tral, some CVs affect phenotype, including non-
synonymous single nucleotide polymorphisms (nsSNPs) 
that contribute to normal phenotypic differences in hair 
color, skin color (Sulem et al., 2007; Han et al., 2008), 
and disease susceptibility (WTCCC, 2007; Amos et al., 
2008; Harley et al., 2008; Tenesa et al., 2008). Other 

CVs result in deleterious missense mutations that cause 
highly penetrant Mendelian-inherited diseases (Kim et 
al., 2007). These deleterious mutations have been of 
great interest in biomedical research and clinical prac-
tice for decades and account for approximately half of 
the genetic variations that are known to cause disease.
  Using recent advancements in sequencing tech-
nologies, several studies have reported a number of se-
quence variations in certain cancers (Sjoblom et al., 
2006; Greenman et al., 2007; Campbell et al., 2008; 
Jones et al., 2008), in which mutational patterns have 
differed greatly between patients with the same disease. 
Furthermore, major initiatives, such as the Human 
Variome Project, the 1000 Genomes Project, and the 
International Cancer Genome Consortium, will generate 
a vast amount of variation data. Consequently, it is im-
portant to assess variations in conjunction with protein 
function and disease phenotype. Several databases, 
such as the Online Mendelian Inheritance in Man 
(OMIM) and the Human Gene Mutation Database 
(HGMD), have documented CVs that correspond to 
Mendelian-inherited human diseases. In addition, many 
computational programs have been created to predict 
the functional effects of unknown CVs (Ng et al., 2006; 
Care et al., 2007). Database searches and bioinformatic 
predictions can be useful in prioritizing novel CVs for 
further analysis.
  In this review, we summarize the databases that are 
most helpful in interpreting the functional effects of CVs. 
We perform an extensive survey of existing in silico pre-
diction methods and compare their performance. Finally, 
we introduce a combination method as a promising ap-
proach to improve prediction performance.

Polymorphism and Mutation Databases
Several databases that are helpful in assessing the 
functional effects of CVs or their relevance to disease 
phenotype are listed in Table 1. Each of two broad-cat-
egory mutation databases, general mutation databases 
(GMDBs) and locus-specific mutation databases (LSDBs), 
has unique strengths and weaknesses (Porter et al., 
2000). Because polymorphism and mutation databases 
have been developed for different uses, they comple-
ment each other.
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Table 1. Polymorphism and mutation databases

Database Recent release date* Data type Features Website

OMIM 

 (Hamosh et al., 
2005)

Updated daily Deleterious mutations Full-text descriptions of published 

disease-causing variations

http://www.ncbi.nlm.nih.

gov/omim

HGMD 

 (Stenson et al., 2008)

Sept 2008 Deleterious mutations Comprehensive collection of published 

disease-causing variations

http://www.hgmd.cf.ac.uk

LSDB in HGVS Nov 2008 Deleterious mutations Specialized collection of a particular 

gene or locus

http://www.hgvs.org/dblist/

glsdb.html

Swiss-Prot 

 (Yip et al., 2004)

Nov 2008 Deleterious mutations 

and neutral 

polymorphisms

Well-summarized list of variations and 

corresponding proteins

http://www.expasy.org/

cgi-bin/lists?humsavar.txt

dbSNP 

 (Sherry et al., 2001)

Apr 2008 Neutral and (few) 

deleterious SNPs

Broad collections of SNPs regardless 

of clinical associations (clinically 

associated SNPs linked to source 

sites)

http://www.ncbi.nlm.nih.

gov/projects/SNP

dbGaP 

 (Mailman et al., 
2007)

Nov 2008 Deleterious or pheno-

type-affecting SNPs

Collections of SNPs affecting clinical 

phenotypes or nonclinical traits

http://www.ncbi.nlm.nih.

gov/gap

HapMap 

 (Frazer et al., 2007)

Oct 2008 Neutral SNPs and (very 

few) deleterious SNPs

Collections of SNPs of 270 individuals 

randomly selected from African, 

Asian, and European populations

http://www.hapmap.org

*Accessed Nov 2008. Because LSDBs are individually updated, the presented release date is for HGVS.

OMIM

OMIM is among the most representative and well-docu-
mented GMDBs, and it contains a full-text overview of 
human genes and genetic disorders. The contents of 
OMIM are considered comprehensive, authoritative, and 
timely, because they are written at Johns Hopkins 
University School of Medicine and edited daily with in-
put from scientists and physicians from around the 
world (Hamosh et al., 2005). Many CVs that are regis-
tered in OMIM may have deleterious effects on protein 
function and cause Mendelian-inherited diseases. OMIM 
also includes some disease susceptibility variations that 
are found in association analyses. OMIM is therefore a 
valuable resource to study the characteristics of varia-
tions that severely affect a certain phenotype.

HGMD

HGMD is a comprehensive and publicly available GMDB 
of gene lesions that underlie human inherited diseases 
(Krawczak et al., 2000; Stenson et al., 2003; Stenson et 
al., 2008). Two different versions of the database exist: 
an up-to-date commercial version and an older public 
version-both of them provide comprehensive mutation 
information. The total number of public entries that are 
available to users from academic institutions or non-
profit organizations is 61,447, comprising 35,168 mis-
sense or nonsense mutations, 10,035 small deletions, 

and 5805 splicing mutations. Because data are col-
lected by a combination of manual and computerized 
searches, the contents are considered highly reliable. 
GMDBs, such as OMIM and HGMD, have several limi-
tations, however, most of which are attributable to 
less-specialized knowledge of particular genetic loci 
(Porter et al., 2000).

LSDB and Swiss-Prot

LSDBs are usually maintained by experts on a particular 
gene or locus, provide a greater depth of information 
about each variation, and often present unpublished da-
ta that are submitted directly by researchers in related 
fields. In contrast, LSDBs can often become stagnant or 
disappear because they are likely to depend on limited 
funding resources and part-time scientists (Porter et al., 
2000). Hundreds of LSDBs for 718 genes are currently 
listed on the website of the Human Genome Variation 
Society (HGVS). The Swiss-Prot database (release ver-
sion 56.4), with 46,799 CVs for 9085 proteins, comple-
ments LSDBs. These CVs are particularly useful for de-
veloping prediction algorithms of functionality (Care et 
al., 2007), because Swiss-Prot provides a well-summar-
ized list of CVs with corresponding protein identi-
fications, sequence positions, amino acid changes, and 
disease associations (disease vs. polymorphism).
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dbSNP

NCBI’s single nucleotide polymorphisms database 
(dbSNP, build 129) contains 14.7 million human refer-
ence SNPs. Their broad collection of simple genetic 
polymorphisms includes SNPs, small-scale multibase 
deletions or insertions, retrotransposable element in-
sertions, and microsatellite repeat variations (Sherry et 
al., 2001). The database provides the frequency of the 
polymorphism by population or individual, allowing for 
estimates of prevalence in a specific population. The 
database archives variations regardless of their clinical 
associations and contains some clinically associated 
SNPs that are linked to OMIM, LSDB, or the clinical 
laboratory. It should be noted that SNPs that lack clin-
ical associations and have not been functionally vali-
dated may still be relevant.

dbGaP

The database of genotype and phenotype (dbGaP) ar-
chives the results of studies that investigate the inter-
action between genotype and phenotype (Mailman et 
al., 2007). The database includes SNPs that affect both 
clinical and nonclinical phenotypes that are found in ge-
nome-wide association studies, medical sequencing, 
and molecular diagnostic assays. The results are cate-
gorized by study and by disease. More than 30 studies 
are listed, each comprising thousands of case-control 
sets or parent-offspring trios. Authorized users can 
download individual-level data for their own research.

HapMap

The haplotype map (HapMap) (release #24) contains the 
genotypes and frequencies of over 3.8 million SNPs. 
The SNPs were obtained by analyzing DNA samples 
from 270 individuals, comprising 30 trios of two parents 
and an adult child of African ancestry, 30 trios of 
European ancestry, and 90 unrelated individuals of 
Asian ancestry (Frazer et al., 2007). Because the in-
dividuals were randomly selected, one would expect 
that very few variations in HapMap are functionally dele-
terious; therefore, HapMap data could be used as a ref-
erence set of neutral CVs.
  In conclusion, the OMIM, HGMD, and LSDB data-
bases catalog known deleterious mutations that result in 
severe disease, while the Swiss-Prot and dbGaP data-
bases record those that have modest effects on the re-
sulting protein. The Swiss-Prot, dbSNP, and HapMap 
databases provide fundamental information on neutral 
polymorphisms.

Prediction Programs for Functional As-
sessment of Sequence Variations
Because it was shown that protein structure and se-
quence-based attributes could provide information to 
distinguish deleterious mutations from neutral sin-
gle-base changes (Sunyaev et al., 2000; Chasman et al., 
2001), many prediction programs have been developed 
and implemented on a web server to provide in silico 
prediction of CV functionality (Ng et al., 2006; Care et 
al., 2007). These programs employ a variety of rule- 
based models and machine learning algorithms, using 
information on protein structure, sequence, phys-
icochemical properties, phylogenetics, and evolutionary 
features. The widely used programs are listed below 
and summarized in Table 2.

SIFT and PolyPhen

The program Sorting Intolerant From Tolerant (SIFT) 
uses sequence homology to calculate a scaled proba-
bility for the substitution that is observed (Ng et al., 
2001; Ng et al., 2002; Ng et al., 2003). Substitutions 
that have a low scaled probability are predicted to af-
fect protein function. The Swiss-Prot/TrEMBL databases 
and PSI-BLAST were used for sequence alignment. As 
the first program that was implemented on a web serv-
er, SIFT is one of the most frequently used, along with 
Polymorphism Phenotyping (PolyPhen) (Sunyaev et al., 
2001; Ramensky et al., 2002). PolyPhen uses empirically 
derived rules to predict the effect of CVs on protein 
function. The rules are based on known protein struc-
tures, sequence conservation between homologous pro-
teins, and sequence-based characterization of the sub-
stitution site (e.g., binds lipid, metal). These two pro-
grams are among the earliest developed programs and 
have been recently updated.

MSRV

A method that was published by Jiang et al. adopts 
Multiple Selection Rule Voting (MSRV), which includes 
three physicochemical properties (molecular weight, pI 
value, and hydrophobicity scale) of amino acids, three 
relative frequencies for the presence of amino acids in 
secondary structures (helices, strands, and turns), and 
two evolutionary conservation scores (Jiang et al., 
2007). These authors compared the areas under the re-
ceiver operating curves (AUCs) of MSRV, SIFT, and 
PolyPhen and showed that MSRV employs optimal fea-
ture sets, outperforming SIFT and PolyPhen in prioritiz-
ing disease mutations that are responsible for mono-
genic and polygenic diseases.
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Table 2. Programs for predicting functional effects of coding sequence variations

Method
Recent 

release date*
Algorithm Performance† Source 

code
Website

SIFT 

(Ng et al., 2003)

March 2008 Calculates a scaled probability for 

the substitution using sequence 

homology

FN error: 31%

FP error: 20%

Available http://blocks.fhcrc.org/sift

PolyPhen 

(Ramensky 

et al., 2002)

March 2008 Empirical rules based on 

characterization of the substitution 

site, conservation between 

homologous proteins, and protein 

structures

FN error: 31%

FP error: 9%

On request http://coot.embl.de/PolyPhen

MSRV 

(Jiang et al., 
2007)

Aug 2007 Multiple Selection Rule Voting (MSRV) 

using physicochemical properties, 

relative frequencies in secondary 

structures, and evolutionary 

conservation

AUC: 82∼87%

SIFT AUC: 75%

PolyPhen AUC: 

70∼75%

Not 

specified

http://msms.usc.edu/msrv

PANTHER 

(Thomas et al., 
2003)

Aug 2007 Calculates the functional likelihood 

using a hidden Markov model with 

a protein family library

FN error: 59%

FP error: N/A

Available http://www.pantherdb.org/tools/

csnpScoreForm.jsp

SNAP 

(Bromberg et 
al., 2007)

Sept 2008 Combines sequence analysis tools 

and uses protein annotation, solvent 

accessibility, secondary structure, 

flexibility, SIFT results, and 

conservation

FN error: 20%

FP error: 24%

On request http://rostlab.org/services/SNAP

PMUT 

(Ferrer-Costa 

et al., 2005)

May 2005 Uses two neural networks trained with 

human mutation data using structural 

and evolutionary information

FN error: 12∼21%

FP error: 10∼17%

Not 

specified

http://mmb2.pcb.ub.es:8080/

PMut

nsSNPAnalyzer 

(Bao et al., 
2005)

Feb 2005 Random forest trained with structural 

information, sequence conservation, 

and SIFT prediction using Swiss-Prot 

data

FN error: 21%

FP error: 38%

Available http://snpanalyzer.utmem.edu

*Accessed Nov 2008. If the release date was not available on the website, the publication date was presented.
†Performance was summarized based on the literature in which the method was introduced. False negative (FN) error rate 

is the percentage of the deleterious variations predicted to be neutral. False positive (FP) error rate is the percentage of the 

neutral variations predicted to be deleterious. Area under the receiver operating characteristic curve (AUC) was calculated in 

the Jiang et al. study (Jiang et al., 2007).

PANTHER

The program PANTHER can predict the effect of CVs on 
protein function by relating sequence to function 
(Thomas et al., 2003; Thomas et al., 2004). The program 
uses a hidden Markov model and a library of protein 
families to score the functional likelihood of different 
amino acid substitutions. The phenotypic effect is de-
termined by the position-specific evolutionary con-
servation (PSEC) scores that are obtained from the 
model. Because the source codes for the PANTHER pre-
dictor and the PANTHER library are available online, this 
method is useful for analyzing a large number of CVs.

SNAP and PMUT

Screening for Non-Acceptable Polymorphisms (SNAP) 

predicts non-neutral substitutions by using annotations 
from the protein mutant database (Kawabata et al., 
1999) and by combining many sequence analysis tools 
in neural networks (NNs) (Bromberg et al., 2007; 
Bromberg et al., 2008a; Bromberg et al., 2008b). It also 
uses solvent accessibility, secondary structure, flexibility, 
SIFT results, and conservation information. SNAP gives 
a reliability index of the prediction, ranging from 0 (low) 
to 9 (high reliability). PMUT is similar to SNAP with re-
gard to its methods and output. PMUT is also based on 
the use of two NNs that are trained with human muta-
tion data (Ferrer-Costa et al., 2002; Ferrer-Costa et al., 
2004; Ferrer-Costa et al., 2005). It displays a pathoge-
nicity index that ranges from 0 to 1 (＞0.5 signals 
pathological mutations), a confidence index that ranges 
from 0 (low) to 9 (high confidence), and the mutation 
site on the protein structure to trace its pathogenicity.
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Fig. 1. Receiver operating characteristic (ROC) curves of in-

dividual predictors and their combinations. The ROC curves 

of SVM combinations tend toward the upper left corner of 

the plot more than the three individual prediction programs, 

indicating superior performance. This shows that the appro-

priate combination can noticeably improve prediction accu-

racy. Figure from Won et al., 2008.

nsSNPAnalyzer

The program nsSNPAnalyzer uses a machine learning 
algorithm called random forest to combine heteroge-
neous sources of predictors (Bao et al., 2005; Bao et 
al., 2005). Random forest was trained with various fea-
tures, such as structural information, sequence con-
servation, and SIFT prediction using a dataset from 
Swiss-Prot. The source codes of nsSNPAnalyzer are al-
so available on the website.
  As reviewed in this section, many programs use com-
mon sources and methods while exploiting different al-
gorithms, features, and databases. Combined use of 
these in silico programs is encouraged to mitigate their 
limitations in prediction performance. Source codes are 
necessary to analyze large-scale data with several pro-
grams; code availability is summarized in Table 2.

Combination Approach to Predicting Func-
tion
Given that predictions of the functional consequences of 
amino acid substitutions can be more accurate by com-
bining different in silico methods (Ng et al., 2006), a 
combination approach has been proposed to improve 
prediction accuracy (Won et al., 2008). To assess the 

effectiveness of this approach, the prediction perform-
ance of individual programs must be evaluated. A sup-
port vector machine (SVM) was used to combine three 
representative in silico prediction programs (SIFT, 
PolyPhen, and PANTHER) to predict the phenotypic ef-
fects of CVs.
  Assuming that the HapMap dataset comprises mainly 
nonpathogenic variations (negative samples) while the 
HGMD dataset comprises pathogenic variations (positive 
samples), we compared the prediction performances of 
SVM combinations and individual predictors, including 
SIFT, PolyPhen, and PANTHER (see Won et al., 2008 for 
details). The three different kernel functions-a linear ker-
nel, a polynomial kernel, and a radial basis function ker-
nel-were used to train SVMs. The experimental results 
show that the SVM combinations outperform the in-
dividual prediction programs (Fig. 1). In particular, 
SVMpolynomial has a slightly superior predictive value than 
the other two SVM combinations. PANTHER outper-
forms PolyPhen and SIFT in terms of sensitivity over all 
specificity regions. The superior performance of 
SVMpolynomial indicates that the appropriate combination 
can effectively improve prediction accuracy.

Conclusion
Interpreting the functionality of newly found variations in 
gene coding regions is of much importance to both bio-
medical research and clinical practice. The first step to 
understanding these variations is to examine them using 
valuable resources, such as variation databases and 
functional prediction programs. Furthermore, automated 
prediction methods are essential for analyzing CVs on a 
genome-wide scale. This review summarizes representa-
tive examples of useful resources and emphasizes the 
ongoing need for improvement in the performance of in-
dividual prediction methods. We suggest that compre-
hensive analyses that use a combination of comple-
mentary databases and in silico programs are necessary 
to overcome the relative weakness of each program. In 
the case of SVM combinations, we showed that pre-
diction can be improved effectively if the results of the 
individual programs are appropriately combined.
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