DOI QR코드

DOI QR Code

카세그레인 광학계를 사용한 광무선통신 시스템에서 550[nm], 850[nm] 및 1550[nm]의 광 파장에 대한 안개 및 포인팅의 에러의 영향에 대한 해석

Numerical Study on the Wireless Communication at 550[nm], 850[nm] and 1550[nm] Wavelength LD in Fog and Pointing Error using Cassegrain Optics

  • 홍권의 (김포대학교 정보통신과)
  • 발행 : 2008.12.31

초록

안개 및 대기의 교란이 광무선 통신에 주는 영향을 해석하기 위해 가시광선영역의 LD(laser diode) 및 적외선 영역의 LD 사용하고, 카세그레인 광학계를 이용하여 광을 송수신하게 하였으며, 광 소신소자로는 APD(avalanch photo diode)를 사용함을 가정하여 대기 중의 안개의 정도에 따른 가시도 및 교란의 세기를 나타내는 굴절률 구조상수에 따른 광 수신 전력, 잡음 전력을 고려한 SNR(signal to noise ratio)을 계산해 보고 각각의 통신 상태에서 BER(bit error rate)이 $10^{-9}$이 가능한 통신 거리를 알아보았다.

Atmospheric effects on laser beam propagation can be broken down into two categories: attenuation of the laser power and fluctuation of laser power due to laser beam deformation. Attenuation consists of scattering of the laser light photons by the fog. Laser beam deformation occurs because of small-scale dynamic changes in the index of refraction of the atmosphere. This causes pointing error. In order to analyse these effect on optical wireless communication system, in this paper uses cassegrain optics as a transmitting and receiving telescope, AID as a detecting device and ill as a light source. The signal modulating and demodulating method is a IM/DD. I show the effects of fog and pointing error and calculate the possible communication distance for BER is $10^{-9}$.

키워드

참고문헌

  1. William K. Pratt, "Laser communication Systems," John wiley & son, 1969
  2. Gray Waldman John Wootton "Electro-Optical System Performance Modeling," Artech House Boston London, 1993
  3. John Gowar,"Optical communication Systems," Prentice Hall, 1984
  4. S. Arnon, "Optical wireless communication," in Encyclopedia of Optical engineering , R. G. Driggers, 2003
  5. Haim Manor and ShLomi Arnon, "Performance of an optical wireless communication as a function of wavelength," Applied Optics, Vol. 42, No. 21/ pp. 4285 - 4294, 20 July 2003 https://doi.org/10.1364/AO.42.004285
  6. ShLomi Arnon, "Optimization of Urban Optical Wireless Communication Systems," IEEE transactions on wireless communications, Vol. 2, No. 4/ pp. 626 - 629, 4 July 2003
  7. Klein, B.J. Degnan, "Optical antenna gain: 1. Transmitting Antennas," Applied Optics, Vol. 13, No. 9/ pp. 134-2141, 20 1974
  8. Klein, B.J. Degnan, "Optical antenna gain: 2. Receiving Antennas," Applied Optics, Vol. 13, No. 9/ pp. 2397 - 2401, 20 1974 https://doi.org/10.1364/AO.13.002397
  9. Olga Korotkova, Larry C. Andrews, etc "OModel for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom," Optical Engineering, Vol. 43 No. 2/ pp. 330 - 341, February 2004 https://doi.org/10.1117/1.1636185
  10. Isaac I. Kim, Bruce McArthur, etc "Comparison of Laser beam propagation at 785[nm] and 1,550[nm] in fog and haze for optical wireless communications", Optical Access Incorporated 10343 Roselle Street San Diego, CA 92121
  11. DeBie Kedar and ShLomi Arnon, "Optical wireless communication through fog in the presence of pointing error," Applied Optics, Vol. 42, No. 24/ pp. 4946 - 4954, 20 August 2003 https://doi.org/10.1364/AO.42.004946
  12. Morio Toyoshima and Walter R. Leeb etc, "Comparison of microwave and light wave communication systems in space applications," Optical engineering, 46(1), 015003/ pp. 1 - 7, January 2007
  13. Urachada Ketprom and Akira Ishimaru etc, "Channel modeling for optical wireless communication through dense fog," Journal of optical networking, Vol. 4, No. 6/ pp. 291 - 299, June 2005 https://doi.org/10.1364/JON.4.000291
  14. DeBie Kedar and ShLomi Arnon, "Non-line-of-sight optical wireless sensor network operating in multiscattering channel," Applied Optics, Vol. 45, No. 33/ pp. 8454 - 8461,20 November 2006 https://doi.org/10.1364/AO.45.008454
  15. William K. Pratt, "Laser communication Systems," John wiley & son, 1969