Results on Fuzzy Weakly (r, s)-Continuous Mappings on the Intuitionistic Fuzzy Topological Spaces in Šostak's Sense

Won Keun Min

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea

Abstract

In this paper, we investigate some characterizations for fuzzy weakly (r, s)-continuous mapping on an intuitionistic fuzzy topological space in Šostak's sense.

Key words: fuzzy weakly (r, s)-continuous, fuzzy (r, s)-continuous, fuzzy (r, s)-semiopen, fuzzy (r, s)-preopen, fuzzy (r, s)-preopen, fuzzy (r, s)-regular open

1. Introduction

The concept of fuzzy set was introduced by Zadeh [13]. As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Chang [2] defined fuzzy topological spaces using fuzzy sets. In [3], Chattopadhyay, Hazra and Samanta introduced the concept of smooth fuzzy topological spaces which are a generalization of fuzzy topological spaces. Çoker and his colleagues [4,5,6,7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. In [5], Çoker and Demirci introduced intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces.

The concepts of fuzzy (r,s)-open sets, fuzzy (r,s)-semiopen sets and fuzzy (r,s)-preopen sets are introduced in [8,9]. Lee and Kim [10] introduced and studied the concept of fuzzy weakly (r,s)-continuous mappings. In this paper, we investigate some characterizations for fuzzy weakly (r,s)-continuous mappings on the intuitionistic fuzzy topological space in Šostak's sense.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member μ of I^X is called a fuzzy set of X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An *intuitionistic fuzzy set* A is an ordered pair

$$A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \} (\text{ simply, } A = (\mu_A, \gamma_A))$$

Manuscript received May. 6, 2008; revised Aug. 20, 2008. Corresponding Author: wkmin@kangwon.ac.kr(WonKeunMin)

where the functions $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for $x \in X$.

An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X is an intuitionistic fuzzy set

$$x_{(\alpha,\beta)} = (\mu_A, \gamma_A)$$

where the functions $\mu_A:X\to I$ and $\gamma_A:X\to I$ are defined as follows.

$$(\mu_A(y), \gamma_A(y)) = \begin{cases} (\alpha, \beta), & \text{if } y = x, \\ (0, 1), & \text{if } y \neq x, \end{cases}$$

and $0 \le \alpha + \beta \le 1$.

An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to belong to an intuitionistic fuzzy set $A=(\mu_A,\gamma_A)$ in X, denoted by $x_{(\alpha,\beta)}\in A$, if $\mu_A(x)\geq \alpha$ and $\gamma_A(x)\leq \beta$ for $x\in X$.

An intuitionistic fuzzy set A in X is the union of all intuitionistic fuzzy points which belong to A.

Definition 2.1. ([1]) Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.
- (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (3) $A^c = (\gamma_A, \mu_A)$.
- $(4) A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $0_{\sim} = (\tilde{0}, \tilde{1}) \text{ and } 1_{\sim} = (\tilde{1}, \bar{0}).$

Let f be a map from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy set of X and $B = (\mu_B, \gamma_B)$ an intuitionistic fuzzy set of Y.

The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \tilde{1} - f(\tilde{1} - \gamma_A)).$$

The inverse image of B under f, denoted by $f^{-1}(B)$, is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

A smooth fuzzy topology [11] on X is a map $T: I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1$.
- (2) $T(\mu_1 \wedge \mu_2) \geq T(\mu_1) \wedge T(\mu_2)$ for $\mu_1, \mu_2 \in I^X$.
- (3) $T(\bigvee \mu_i) \ge \bigwedge T(\mu_i)$ for $\mu_i \in I^X$.

The pair (X,T) is called a *smooth fuzzy topological* space.

An intuitionistic fuzzy topology on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- $(1) 0_{\sim}, 1_{\sim} \in T.$
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for all i, then $\bigcup A_i \in T$.

The pair (X,T) is called an *intuitionistic fuzzy topological space*.

Let I(X) be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r, s) such that $r, s \in I$ and $0 \le r + s \le 1$.

Definition 2.2. ([6]) Let X be a nonempty set. An *intuitionistic fuzzy topology in Šostak's sense* (SoIFT for short) $\mathcal{T} = (\mathcal{T}_1, \mathcal{T}_2)$ on X is a map $\mathcal{T} : I(X) \to I \otimes I$ which satisfies the following properties:

- (1) $\mathcal{T}_1(0_{\sim}) = \mathcal{T}_1(1_{\sim}) = 1$ and $\mathcal{T}_2(0_{\sim}) = \mathcal{T}_2(1_{\sim}) = 0$.
- $(2) \mathcal{T}_1(A \cap B) \ge \mathcal{T}_1(A) \wedge \mathcal{T}_1(B) \text{ and } \mathcal{T}_2(A \cap B) \le \mathcal{T}_2(A) \vee \mathcal{T}_2(B).$
 - (3) $T_1(\bigcup A_i) \ge \bigwedge T_1(A_i)$ and $T_2(\bigcup A_i) \le \bigvee T_2(A_i)$.

The $(X, \mathcal{T}) = (X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be an *intuitionistic fuzzy topological space in Šostak's sense* (SoIFTS for short). Also, we call $\mathcal{T}_1(A)$ a gradation of openness of A and $\mathcal{T}_2(A)$ a gradation of nonopenness of A.

Definition 2.3. ([10]) Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in an SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r,s) \in I \otimes I$. Then an intuitionistic fuzzy set A is said to be a fuzzy (r, s)-neighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-open set B in X such that $x_{(\alpha,\beta)} \in B \subseteq A$.

3. Main Results

Definition 3.1. ([10]) Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from an SoIFTS X to another SoIFTS Y and $(r,s) \in I \otimes I$. Then f is said to be *fuzzy weakly* (r,s)-continuous if for each fuzzy (r,s)-open set B of Y, $f^{-1}(B) \subseteq int(f^{-1}(cl(B,r,s)),r,s)$.

Theorem 3.2. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from an SoIFTS X to another SoIFTS Y and $(\alpha,\beta),(r,s)\in I\otimes I$. Then f is a fuzzy weakly (r,s)-continuous mapping if and only if for every intuitionistic fuzzy point $x_{(\alpha,\beta)}$ and each fuzzy (r,s)-neighborhood V of $f(x_{(\alpha,\beta)})$, there exists a fuzzy (r,s)-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U)\subseteq cl(V,r,s)$.

Proof. Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and V a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$; then there exists a fuzzy (r,s)-open set B such that $f(x_{(\alpha,\beta)}) \subseteq B \subseteq V$. Since f is a fuzzy weakly (r,s)-continuous mapping,

$$f^{-1}(B) \subseteq int(f^{-1}(cl(B,r,s)),r,s)$$
$$\subseteq int(f^{-1}(cl(V,r,s)),r,s).$$

Set $U = f^{-1}(cl(V, r, s))$; then

$$x_{(\alpha,\beta)} \in f^{-1}(B) \subseteq int(U,r,s) \subseteq U.$$

Hence U is a fuzzy (r,s)-neighborhood of $x_{(\alpha,\beta)}$ and $f(U) \subseteq cl(V,r,s)$.

For the converse, let V be a fuzzy (r,s)-open set in Y. By hypothesis, for each $x_{(\alpha,\beta)} \in f^{-1}(V)$, there exists a fuzzy (r,s)-neighborhood $U_{x_{(\alpha,\beta)}}$ of $x_{(\alpha,\beta)}$ such that $f(U_{x_{(\alpha,\beta)}}) \subseteq cl(V,r,s)$. Now we can say there exists a fuzzy (r,s)-open set $G_{x_{(\alpha,\beta)}}$ such that

$$x_{(\alpha,\beta)} \in G_{x_{(\alpha,\beta)}} \subseteq U_{x_{(\alpha,\beta)}} \subseteq f^{-1}(cl(V,r,s))$$

for each $x_{(\alpha,\beta)} \in f^{-1}(V)$.

Thus we have

$$f^{-1}(V) \subseteq \cup \{G_{x_{(\alpha,\beta)}} : x_{(\alpha,\beta)} \in f^{-1}(V)\}$$

$$\subseteq f^{-1}(cl(V,r,s)).$$

Since $\bigcup \{G_{x_{(\alpha,\beta)}}: x_{(\alpha,\beta)} \in f^{-1}(V)\}$ is a fuzzy (r,s)-open set, we have $f^{-1}(V) \subseteq int(f^{-1}(cl(V,r,s)),r,s)$.

Theorem 3.3. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from an SoIFTS X to another SoIFTS Y and $(\alpha,\beta),(r,s)\in I\otimes I$. Then the following statements are equivalent:

- (1) f is a fuzzy weakly (r, s)-continuous mapping.
- (2) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ and each fuzzy (r,s)-open set V containing $f(x_{(\alpha,\beta)})$, there exists a fuzzy (r,s)-open set U containing $x_{(\alpha,\beta)}$ such that $f(U) \subseteq cl(V,r,s)$.
- (3) $cl(f^{-1}(int(F,r,s)),r,s)\subseteq f^{-1}(F)$ for each fuzzy (r,s)-closed set F in Y.
- (4) $cl(f^{-1}(int(cl(B,r,s),r,s)),r,s) \subseteq f^{-1}(cl(B,r,s))$ for each fuzzy intuitionistic fuzzy set B in Y.
- (5) $f^{-1}(int(B, r, s)) \subseteq int(f^{-1}(cl(int(B, r, s), r, s)), r, s)$ for each fuzzy intuitionistic fuzzy set B in Y.
- (6) $cl(f^{-1}(V),r,s)\subseteq f^{-1}(cl(V,r,s))$ for a fuzzy (r,s)-open set V in Y.

Proof. (1) \Leftrightarrow (2) From Theorem 3.2, it is obvious.

(1) \Rightarrow (3) Let F be any fuzzy (r, s)-closed set of Y. Then $1_{\sim} - F$ is a fuzzy (r, s)-open set in Y and by (1),

$$f^{-1}(1_{\sim} - F) \subseteq int(f^{-1}(cl(1_{\sim} - F, r, s)), r, s)$$

$$= int(f^{-1}(1_{\sim} - int(F, r, s)), r, s)$$

$$= int(1_{\sim} - f^{-1}(int(F, r, s), r, s))$$

$$= 1_{\sim} - cl(f^{-1}(int(F, r, s)), r, s).$$

Hence we have $cl(f^{-1}(int(F,r,s)),r,s) \subseteq f^{-1}(F)$.

 $(3) \Rightarrow (4)$ Let B be any intuitionistic fuzzy set in Y. Since cl(B, r, s) is a fuzzy (r, s)-closed set in Y, by (3),

$$cl(f^{-1}(int(cl(B,r,s),r,s))) \subseteq f^{-1}(cl(B,r,s)).$$

 $(4) \Rightarrow (5)$ Let B be any intuitionistic fuzzy set of Y. Then,

$$f^{-1}(int(B, r, s))$$
= $1_{\sim} - (f^{-1}(cl(1_{\sim} - B, r, s)))$
 $\subseteq 1_{\sim} - cl(f^{-1}(int(cl(1_{\sim} - B, r, s), r, s), r, s))$
= $int(f^{-1}(cl(int(B, r, s), r, s), r, s))$.

Hence,

$$f^{-1}(int(B,r,s)) \subseteq int(f^{-1}(cl(int(B,r,s),r,s)),r,s).$$

(5) \Rightarrow (6) Let V be any fuzzy (r,s)-open set of Y . Then by (5),

$$1_{\sim} - f^{-1}(cl(V, r, s))$$

$$= f^{-1}(int(1_{\sim} - V, r, s))$$

$$\subseteq int(f^{-1}(cl(int(\tilde{1} - V, r, s), r, s)), r, s)$$

$$= int(1_{\sim} - (f^{-1}(int(cl(V, r, s), r, s)), r, s))$$

$$= 1_{\sim} - cl(f^{-1}(int(cl(V, r, s), r, s)), r, s)$$

$$\subseteq 1_{\sim} - cl(f^{-1}(V), r, s).$$

Hence we have

$$cl(f^{-1}(V), r, s) \subseteq f^{-1}(cl(V, r, s)).$$

(6) \Rightarrow (2) Let V be a fuzzy (r, s)-open set containing $f(x_{(\alpha,\beta)})$. By (6),

$$\begin{array}{lll} x_{(\alpha,\beta)} & \in & f^{-1}(V) \\ & \subseteq & f^{-1}(int(cl(V,r,s),r,s)) \\ & = & 1_{\sim} - f^{-1}(cl(1_{\sim} - cl(V,r,s),r,s)) \\ & \subseteq & 1_{\sim} - cl(f^{-1}(1_{\sim} - cl(V,r,s)),r,s) \\ & = & int(f^{-1}(cl(V,r,s)),r,s). \end{array}$$

Set $U = int(f^{-1}(cl(V, r, s)), r, s)$. Then U is a fuzzy (r, s)-open set satisfying $f(U) \subseteq cl(V, r, s)$.

Definition 3.4. Let A be an intuitionistic fuzzy set in an SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is said to be

(1) fuzzy (r, s)-semiopen [8] if there is a fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq cl(B, r, s)$,

(2) fuzzy (r, s)-preopen [9] if $A \subseteq int(cl(A, r, s), r, s)$,

(3) fuzzy (r,s)-regular open [10] if A = int(cl(A,r,s),r,s),

(4) fuzzy (r, s)- β -open if $A \subseteq cl(int(cl(A, r, s), r, s), r, s)$.

$$\begin{array}{c|c} & \text{fuzzy } (r,s)\text{-semiopen} \\ \nearrow & \searrow \\ \text{fuzzy } (r,s)\text{-open} & \text{fuzzy } (r,s)\text{-}\beta\text{-open} \\ & \searrow & \nearrow \\ & \text{fuzzy } (r,s)\text{-preopen} \end{array}$$

The following examples show that the converses of the above diagram may not be true.

Example 3.5. Let $X = \{x, y\}$ and A_1 , A_2 and A_3 be intuitionistic fuzzy sets of X defined as

$$A_1(x) = (0, 0.8), \quad A_1(y) = (0.3, 0.5);$$

 $A_2(x) = (0.8, 0), \quad A_2(y) = (0.3, 0.5);$

and

$$A_3(x) = (0.8, 0), \quad A_3(y) = (0.6, 0.3);$$

Define $\mathcal{T}:I(X)\to I\otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then (T_1, T_2) is an SoIFT on X. Since $cl(A_3, \frac{1}{2}, \frac{1}{3}) = 1_{\sim}$, clearly A_3 is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ - β -open set but it is not fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen.

Example 3.6. Let $X = \{x, y, z\}$ and A_1 , A_2 and A_3 be intuitionistic fuzzy sets of X defined as

$$A_1(x) = (0, 0.8), \quad A_1(y) = (0.3, 0.6), \quad A_1(z) = (0.3, 0.6);$$

$$A_2(x) = (0.8, 0), \quad A_2(y) = (0.6, 0.3), \quad A_2(z) = (0.6, 0.3);$$

and

$$A_3(x) = (0.8, 0), \quad A_3(y) = (0.5, 0.3), \quad A_3(z) = (0.5, 0.3).$$

Consider an SoIFT $\mathcal{T}:I(X)\to I\otimes I$ on X defined as follows.

$$T(A) = (T_1(A), T_2(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Since $A_3 \subseteq cl(int(cl(A_3, \frac{1}{2}, \frac{1}{3}), \frac{1}{2}, \frac{1}{3}), \frac{1}{2}, \frac{1}{3})$ and $int(cl(A_3, \frac{1}{2}, \frac{1}{3}), \frac{1}{2}, \frac{1}{3}) \subseteq A_3$, A_3 is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ - β -open set but not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen set.

Theorem 3.7. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from an SoIFTS X to another SoIFTS Y and $(r,s)\in I\otimes I$. Then the following statements are equivalent:

- (1) f is a fuzzy weakly (r, s)-continuous mapping.
- (2) $cl(f^{-1}(int(cl(G,r,s),r,s)),r,s) \subseteq f^{-1}(cl(G,r,s))$ for each fuzzy (r,s)-open set G in Y.
- (3) $cl(f^{-1}(int(cl(V,r,s),r,s)),r,s) \subseteq f^{-1}(cl(V,r,s))$ for each fuzzy (r,s)-preopen set V in Y.
- (4) $cl(f^{-1}(int(K,r,s)),r,s)\subseteq f^{-1}(K)$ for each fuzzy (r,s)-regular closed set K in Y.
- (5) $cl(f^{-1}(int(cl(G, r, s), r, s)), r, s) \subseteq f^{-1}(cl(G, r, s))$ for each fuzzy (r, s)- β -open set G in Y.
- (6) $cl(f^{-1}(int(cl(G,r,s),r,s)),r,s) \subseteq f^{-1}(cl(G,r,s))$ for each fuzzy (r,s)-semiopen set G in Y.
- *Proof.* (1) \Rightarrow (2) Let G be a fuzzy (r,s)-open set of Y; then by Theorem 3.3 (3), we have $cl(f^{-1}(int(cl(G,r,s),r,s)),r,s)\subseteq f^{-1}(cl(G,r,s)).$
- $(2)\Rightarrow (3)$ Let V be a fuzzy (r,s)-preopen set in Y. Then $V\subseteq int(cl(V,r,s),r,s)$. Set A=int(cl(V,r,s),r,s). Since A is a fuzzy fuzzy (r,s)-open set, from (2), it follows

$$cl(f^{-1}(int(cl(A, r, s), r, s)), r, s) \subseteq f^{-1}(cl(A, r, s)).$$

Since cl(A, r, s) = cl(V, r, s), we have

$$cl(f^{-1}(int(cl(V,r,s),r,s)),r,s) \subseteq f^{-1}(cl(V,r,s)).$$

 $(3) \Rightarrow (4)$ Let K be a fuzzy (r, s)-regular closed set of Y. Since int(K, r, s) is a fuzzy (r, s)-preopen set, by (3),

$$cl(f^{-1}(int(cl(int(K,r,s),r,s),r,s)),r,s)$$

$$\subseteq f^{-1}(cl(int(K,r,s),r,s)).$$

Since int(K,r,s) = int(cl(int(K,r,s),r,s),r,s) and K = cl(int(K,r,s),r,s), we have

$$cl(f^{-1}(int(K,r,s)),r,s) \subseteq f^{-1}(K).$$

(4) \Rightarrow (5) Let G be a fuzzy (r,s)- β -open set. Then $G\subseteq (cl(int(cl(G,r,s),r,s),r,s))$ and cl(G,r,s) is a fuzzy (r,s)-regular closed set. Hence by (4), we have

$$cl(f^{-1}(int(cl(G, r, s), r, s)), r, s) \subseteq f^{-1}(cl(G, r, s)).$$

- $(5) \Rightarrow (6)$ It is obvious.
- (6) \Rightarrow (1) Let V be a fuzzy (r,s)-open set; then since V is a fuzzy (r,s)-semiopen set, by (6) and $V\subseteq int(cl(V,r,s),r,s)$, we have

$$cl(f^{-1}(V), r, s) \subseteq cl(f^{-1}(int(cl(V, r, s), r, s)), r, s)$$
$$\subseteq f^{-1}(cl(V, r, s)).$$

Hence, f is a fuzzy weakly (r, s)-continuous mapping. \square

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87–96.
- [2] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182–190.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [5] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Šostak's sense, BUSEFAL 67 (1996), 67–76.
- [6] R. Ertürk and M. Demirci, On the compactness in fuzzy topological spaces in Šostak's sense, Mat. Vesnik **50** (1998), no. 3-4, 75-81.
- [7] H. Gürçay, D. Çoker, and A. Haydar Eş, *On fuzzy continuity in intuitionistic fuzzy topological spaces*, J. Fuzzy Math. **5** (1997), 365–378.
- [8] E. P. Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 14 (2004), 234–238.
- [9] S. O. Lee and E. P. Lee, Fuzzy (r,s)-preopen sets, International J. Fuzzy Logic and Intelligent Systems 5 (2005), 136–139.
- [10] S. J. Lee and J. T. Kim, Fuzzy (r,s)-irresolute maps, International J. Fuzzy Logic and Intelligent Systems 7 (2007), 49–57.
- [11] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems **48** (1992), 371–375.
- [12] A. A. Ramadan, S. E. Abbas, and A. A. Abd Ellatif, *Compactness in intuitionistic fuzzy topological spaces*, International Journal of Mathematics and Mathematical Sciences (2005), 19–32.
- [13] L. A. Zadeh, *Fuzzy sets*, Information and Control **8** (1965), 338–353.

Won Keun Min

Professor of Kangwon National University Research Area: Fuzzy topology, General topology E-mail: wkmin@kangwon.ac.kr