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Abstract
We introduce new type of networked robot, Ubiquitous Robotic Companion (URC), embedded with ATLAS Service-oriented architecture

for enhancing the space sensing capability. URC is a network-based robotic system developed by ETRI. For years of experience in

deploying service with ATLAS sensor platform for elder and people with special needs in smart houses, we need networked robots to assist

elder people in their successful daily living. Recently, pervasive computing technologies reveals possibilities of networked robots in smart

spaces, consist of sensors, actuators and smart devices can collaborate with the other networked robot as a mobile sensing platform, a

complex and sophisticated actuator and a human interface. This paper provides our experience in designing and implementing system

architecture to integrate URC robots in pervasive computing environments using the University of Florida’s ATLAS service-oriented

architecture. In this paper, we focus on the integrated framework architecture of URC embedded with ATLAS platform. We show how the

integrated URC system is enabled to provide better services which enhance the space sensing of URC in the smart space by applying

service-oriented architecture characterized as flexibility in adding or deleting service components of Ubiquitous Robotic Companion.
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1. Introduction

A Ubiquitous Robotic Companion (URC) is a new concept
for a networked robotic system. The motivation of a URC stems
from the reduction of expensive cost of a fully equipped
intelligent robot system which comes with all the required
technical features within a system. The basic concept of URC is
to share the robot’s three core technical features — sensing,
processing and action — on the network as shown in figure 1. It
means that URC robots may have minimum sensing and action
capabilities to communicate with URC server on the network to
acquire processing capability. They use external sensors in the
URC environment rather than embedding sensors into the URC
robots. When they use URC server, which is connected via a
broadband network, for overcoming their on-board memory and
processor constraints, the external sensor nodes transmit sensed
data to the URC server and the URC robots receive control data
of specific device from the URC server [8, 18]. ETRI has
developed URC technology and applied it to URC services in
real world since 2004.

After verification of URC concept by field tests, the authors
decided that the URC should fully utilize external sensors and
actuators in the environment by adopting UF’s ATLAS service-
oriented architecture. If the URC’s sensing features be enhanced
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by using embedded sensor platforms, the space sensing
capability of the URC robot would be dramatically improved.

Ubiquitous sensor network
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Fig. 1. URC's Three Core Technical Features

However, it is not easy to deploy URC robots in smart space,
because robot environments are diverse and subject to change
dynamically and even URC robots are moving around in the
smart spaces.

The University of Florida Mobile and Pervasive Computing
Laboratory has accumulated significant experience in designing
and building smart spaces throughout the years. In particular, the
technology developed has culminated in the grand opening of
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the Gator Tech Smart House (GTSH) project, a 2,500 sq. ft.
stand-alone intelligent house designed for assistive independent
living for elderly residents. The primary technical component of
GTSH is the ATLAS Platform [12, 19], which includes plug-
and-play ATLAS ATLAS
middleware that embraces service-oriented architecture, and a

sensor and actuator nodes,

set of intuitive tools for easy configurations and fast
implementation of smart spaces.

The collaboration between ETRI and UF brings together the
streamlined embedded framework of the URC robots and
ATLAS service-oriented architecture. The outcome of the
collaboration is a fast and easily deployable smart space that
robots can collaborate with embedded ATLAS sensor platform
to assist elder people and to co-work with other URC robots
which enhance space sensing and request of processing
capabilities. On the other hand, the presence of the URC into
smart houses brings unforeseen capabilities to perform high
order of complex actuations on mobile platforms that can
provide better assistance to the elderly that require mobility and
social communications. In this paper, we present our experience
of design and implement of the URC system with ATLAS
architecture that integrates the URC robots and the ATLAS
service-oriented architecture in the smart space to enhance the
space sensing of the URC robots for successful independent
living of elderly and disabled people in smart houses.

The remainder of the paper is organized as follows. We
discuss related works in Section 2, experience of Gator Tech
Smart House in Section 3, proposed framework architecture in
Section 4, implementation of the framework in Section 5 and

conclusions in Section 6.

2. Related Work

There are a number of projects that attempt to enhance robots
using pervasive computing technologies. A mobile kitchen robot
uses Player/Stage/Gazebo software library to create a
middieware and supports integration into ubiquitous sensing
infrastructures to enhance the interfacing, manipulation and
cognitive processing of the robot [22]. The networked robot
project of the Japanese Network Robot Forum [34] has been
carried out since 2004. It considers sensors and actuators in the
environment as unconscious robots which collaborate with
software robots and physical robots. Various types of robots had
been investigated through bridging between robots and
ubiquitous networks. Through collaboration and interactions
among robots, multifaceted and diversified services were also
investigated. The ETRI URC project also is one of major efforts
to improve robots’ intelligence using pervasive computing
technologies [18]. It enables robots to reduce costs and improve

quality of services by taking full advantage of ubiquitous

network environment and the networked server framework.

The pervasive computing technologies have opened new
possibilities of providing robots with active spaces, in which
sensors, actuators and smart devices can collaborate with robots.
Examples of pervasive computing technologies have been
deployed to create intelligent environments include homes [12,
13, 17, 19], offices [1, 9, 15, 20], factory [24, 26, 27], open
space [21], classrooms [2], and hospitals {10, 14, 31].
Depending on the environment that they have been deployed to
and the primary goals of the system, pervasive computing
technologies provide services in location tracking, context
gathering and interpretation, human gesture recognition, activity
planning and many more [5, 16, 23, 25]. These services have
been created to gather data in intelligent environments, process
and make decisions based on the collected data and information,
and then direct the actions of the devices and actuators in the
same environments. However, much of the sensed data and
information is also helpful in assisting robots.

3. Experience of Gator Tech Smart House

3.1. Experience in Early Stage
The goals and requirements of the proposed framework
architecture were conceived during our recent work in
prototyping “assistive environments” for elder people and
individuals with special needs. Housed inside the pervasive
computing lab and occupying over 500 sq ft, Matilda Smart
House was the first attempt at creating such assistive
environments at the University of Florida. We had no guiding
architecture while deploying the Matilda Smart House. We
integrated tens of sensors, actuators, appliances and other
components including contact sensors, motion sensors, cameras,
ultrasonic transceivers, X10 modules and controllers, several
microprocessor-based controllers, a microwave oven, an
entertainment system, mobile phones, and a home PC. The
Matilda Smart House fulfilled its purpose as a demo platform,
but more importantly, it solidifies the true need for architecture
and helps in identifying its goals and requirements, which we
summarize below:
® We wished to eliminate the need for system integration. We
wanted it to be possible for an entity joining the space to self-
explore and self-integrate itself. We also wanted the pervasive
space to be able to cleanly remove exiting (or failed) entities.
This plug and play wish was highest on our list.
® We wished to decouple application development from the
physical world of sensors and actuators. Any hard-coding of
physical artifacts within the applications should be avoided.
To achieve this, we wanted any physical entity (sensor or
actuator) to be liquidated into a basic software service at the
time (and as a result) of self integration. This way we would
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no longer deal with physical entities and instead deal with
their service representations.
® We wished to program the pervasive space. Capitalizing on
the service-oriented view of sensors and actuators, we allowed
ourselves to wish for a pervasive space that would be able to
map itself automatically into a software development project
within an integrated development environment (IDE) such as
Visual Studio or Eclipse. This big wish was equivalent to
asking for total control over the management, configuration
and applications development of pervasive computing
systems. We knew that if this would ever be possible, we
would have completely changed the skill set needed to build
pervasive spaces. Instead of engineers and costly system
affordable
programmers with standard Java or .NET skills would be all

integrators, and highly available computer
that is needed to develop and program pervasive spaces.

® We wished for the pervasive space to be open and flexible to
embrace a variety of entities without any special favor
towards particular participants or their underlying technology.
Well-accepted standards should be utilized.

3.2. Experience of ATLAS in Gator Tech Smart House

To make the items in the wish list above come true, during the
process of implementing the full-scale, 2,500 sq. ft. freestanding
Gator Tech Smart House, we designed and implemented the
ATLAS architecture. This architecture includes the ATLAS
sensor and actuator platform as the basic bridge between the
physical and digital worlds; the ATLAS middleware, and the
service authoring tool. It supports self-configuration and
facilitates programmability of services in smart spaces, and the

implementation has become the central piece in our smart homes.

Requirements of system support for pervasive computing
environments are extremely diverse depending on the
apphication domains. For instance, a pervasive computing
system in assistive living would be vastly different from Habitat
monitoring in a remote forest. Since our work is primarily
concerned with assistive living in smart homes, the design of the
ATLAS architecture follows certain assumptions.
® First, we assume that there is a light-weight centralized home

server with capabilities similar to set-top boxes or access

points, that has a global view of the smart home and
management capabilities for the various entities and services
under the roof.

® We also assume the underlying network runs TCP/IP protocol,
with most of the entities located inside a private network, with

a NAT-enabled gateway for connections to and from any

outside services and entities.
® The abundance of power in regular households means low

power design and power management would not be a primary
concern in the design.
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To make ATLAS middleware the foundation of the kind of
pervasive computing systems we envisioned, it is important that
it should be able to fulfill the following functionalities and
objectives [3, 4, 6, 7, 11, 28, 29, 30, 32, 33]. First of all, this
middleware architecture has to be modular and extensible; it
should based on a service-oriented architecture, in which each
application and device is represented as a service entity, so their
entrance, departure and movement can be interpreted and
handled more easily; the services can utilize other software
components, but they must be built in a modular fashion such
that the modules can be shared and reused, and the system
should be able to determine if the required modules are present
before initiating any service; the system should be easily
programmable so its capability is extensible and customizable,
meaning that it allows programmers to write new software while
utilizing the services provided by existing modules.

ATLAS must also handle the dynamicity and heterogeneity in
a typical pervasive computing environment; the hardware and
software components should support the notion of plug-and-play,
where components are able to self-configure and self-organize
when joining the system, the drivers and communications
protocols should be setup automatically as soon as they join, and
the other existing software modules can discover and use these
new components.

The capability to dynamically manage the life cycle of each
component is also crucial, because the openness and dynamic
nature of smart environment, it is common for new entities to
enter, and existing entities to be replaced or went bad, the
middleware needs to handle these events gracefully, providing
smooth introduction, modification, replacement, or termination;
the middleware should also provide an API for interacting with
and accessing diverse devices, so the consumers of the
heterogeneous devices and services can have a consistent way to
view and manipulate them.

Other main functionalities and objectives include the
adherence to existing and upcoming standards, the provision of
security, safety and privacy features and the mechanism to
by hundreds of

and functional

scalable concurrent
With
requirements, we designed the ATLAS architecture as shown in

support operations

components. these  assumptions
figure 2.

At the bottom of the ATLAS architecture is the ATLAS
nodes with plug-and-play capabilities, the nodes connect to
physical devices such as various sensors and actuators, and
provides a bridge for communicating between the physical
world and the digital realm. The ATLAS middleware is
implemented as a collection of collaborating modules. The
middleware running on the central server is based on OSGi,
which is an open standard that defines and provides facilities for

service registry, life cycle management and dynamic binding.
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Fig. 2. ATLAS Architecture

On top of OSGi are several service modules in the form of
software bundles. Bundie repository manages the collection of
service bundles for the various devices that can connect and be
integrated into the smart environment; Network Manager keeps
track of all the nodes in the network and the services they
provide; Configuration Manager is responsible for retrieving the
various service bundles required by the nodes and for remotely
configuring them over the network; Context manager and safety
monitor uses a context-driven model that is independent of the
active services to monitor the context changes and alerts users to
the occurrence of any unsafe or undesirable context;
Communication modules provide an atray of standard protocols
that can be used for the external communication with other
business software, front-end portal, or any other collaborating
system and stand-alone software.

These
communication between various components residing in the
same OSGi ATLAS
Developer API provides a unified interface for programmers to

modules can also facilitate the inter-bundle

framework should the need arise;
interface and control diverse sensor, actuator and service
entities; Service authoring tool is provided in the form of an
ATLAS plug-in for Eclipse, and it provides the capability for
programmers to browse through the available entities, choose
the components they need, and create and deploy new services
by simply specifying the application logic.

4. Proposed Framework Architecture

4.1. Framework Design

The collaboration between ETRI and UF brings together
discussing the design of the programmable sensor framework
for the URC system that bridges real world sensing and
actuating by way of the URC platform. The result is a fast and
easily deployable smart space that networked robots can
collaborate with and surrogate to, which can offer and extend its
sensing and processing capabilities. On the other hand, the
introduction of the URC into smart houses brings unforeseen
capabilities to perform high order of complex actuations on

mobile platforms that can provide better assistance to the elderly
that require mobility and social communications. In this section,
we present the motivation and design of integrated framework
architecture to merge the URC robots into the smart space in
order to enhance the sentience of the URC for the elderly and
disabled people at home.

4.2. Motivation

We consider sensors and actuators in the environment as
unconscious robots which collaborate with software robots and
physical robots. The ETRI’s URC project is regarded as one of
major efforts to improve robots’ intelligence using pervasive
computing technologies. It enables robots to reduce costs and
improve quality of service by taking full advantage of
ubiquitous network environment and the networked server
framework. When we try to integrate the programmable sensor
framework into the URC system, the first thing we have
encountered is the difference in architecture and implementation
environment.

Figure 3 describes conceptual network configuration showing
the two different systems communicate each other with the
ATLAS middleware and CAMUS-PLANET. As the ATLAS is
implemented upon the OSGi, the integration of the framework
into the URC system requires adaptation, interfaces or change in
its architecture. We have discussed with the ETRI team on the
efforts  of
implementation and changes in each other’s architecture.

CAMUS Server
Planet
P X

»

e[

Service Agent Manager g

design of the framework with minimum

Atias Middlewars

Lot Gl

Fig. 3. Conceptual network configuration of two different
systems

4.3, Functions in the framework

To integrate the ATLAS service-oriented middleware into the
URC’s middleware, i.e., Context-Aware Middleware for URC
Systems (CAMUS), we discussed two different approaches from
the perspective of architecture; (1) Comply with the ETRI URC
architecture and (2) Build interface of OSGi in the ETRI URC
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side. The task of CAMUS connects and controls many different
kinds of robots. It acquires sensing information from robots and
environments, plans tasks based on the current context and

finally sends control and actuation command messages to robots.

It also has some functions including voice recognition, voice
synthesis and image recognition, which are heretofore executed
in a robot itself. Figure 4 is conceptual architecture based on the
ETRI URC architecture.

We found that the architecture in figure 4 would give two
different architectures with considerable changes in each other’s
architecture for integrating the programmable sensor framework
into the URC system. For instance, if we design the system that
operates on top of OSGi, the OSGi will be a bridge of the two
different architectures but it generates redundancies and
seemingly influences system performance, for instance, possible
delay in response time.

For optimized design of the framework, we find out that the
CAMUS[1] consists of three main modules: Service Agent
Managers, the CAMUS server and the Planet. The Service
Agent Manager (SAM) is the robot-side framework to send
robot’s sensing data to the CAMUS server and receive control
and actuation commands from the CAMUS server. The CAMUS
server is the server-side framework to manage the information
delivered from SAMs, generate and disseminate appropriate
events according to the context changes, and finally execute
server-based robot tasks. And we also find that the Planet is the
communication framework between the SAMs and the CAMUS

SErver.

events to notify the CAMUS server that its device detects some
noticeable changes and receives requests from the CAMUS
server to actuate its device. The SAM is a software container of
these service agents that reside in a robot or a space, and
manages them. SAM plays a central role in the integration of the
ATLAS and the CAMUS systems. The collaboration between
smart spaces and robots are facilitated by the communication
between the ATLAS middleware and the SAM. Figure 5 shows
the updated architecture of the SAM that holds the ATLAS
service-oriented middleware module.

When a new device is deployed in the space, the plug-and-
play capability ensures that a service bundle is activated in the
ATLAS middleware; at the same time, the Service Agent
Loader detects this event from the ATLAS Middleware and it
registers this service to the CAMUS server so that the CAMUS
tasks use this service. Similarly, when an existing device is
removed from the space, the corresponding service bundle
automatically expires; while the service agent loader also detects
this event and un-registers them from the CAMUS server.

Gee| Bunde
Event interpreler SAM
) e Event -
Service. ; _Publisher Connection | | &
Agent Monitor | a
Loader . R CAMUS
Sensor ServiceAgent | | Server
Interpreter Invocator
K 2\

Listener;

i )
u tival !

Aflas Service-Oriented Middieware

Plug and Play Platform

< Physical Environment )

EnvironmentN

0OSGi-based SAM Atlas Middleware

Planet
Bundie |
SAM CAMUS Client
EventInterpreter| | |

SABundle
Activator

OSGi Framework

l

Physical Other Platform
Sensor (Robot)

Fig. 4. Conceptual Architecture of the ETRI URC

With this URC’s architectural information and discussions,
we integrate the ATLAS service-oriented middleware in the
architecture of the SAM. The service agent (SA in figure 4) is a
software module performed as a proxy to connect various
sensors and devices to the CAMUS server. It raises software
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Fig. 5. Updated Architecture of the SAM

As shown in the figure 5, the ATLAS service-oriented
middleware is being monitored by the Listener in the Service
Agent Loader. When the sensing event happens in each Bundle
Activator, then the Listener sends activation signal to the Sensor
Interpreter. The Sensor Interpreter then, receives sensed data
from the Bundle Activator. After the CAMUS sends commands
information regarding the situational response of the sensed data,
the Service Agent Invocator transmits it to the Bundle Activator
to activate the ATLAS platform to run the target actuator.
Therefore, the ATLAS
communication channels with the Listener,

service-oriented middleware has
the Service
Interpreter and the Service Agent Invocator to each Bundle
Activator.

The integration between the systems requires service bundles
to implement interfaces to communicate with the other service
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in the ATLAS middleware, as well as the SAM. The bundles run
in the OSGi framework, but also have the capabilities of regular
service agents.

The Service Agent Invocator allows the tasks at the CAMUS
server to invoke methods at service agents. A key feature of the
Service Agent Invocator is supporting the asynchronous method
invocation. It takes parts in necessary scheduling and threads
The
Connection Monitor plays a key role in handling the

managements in handling asynchronous invocation.
disconnection. It continuously monitors the connection to the
CAMUS for the
reconnection whenever it detects a disconnection. Any events
raised by a service agent run through the Sensor Interpreter in

server and takes appropriate actions

the SAM. The sensor interpreter examines each event, passing,
dropping, refining or aggregating them. Sometimes the Event
Interpreter inserts new events based on the event it examines. By
this way, any duplicated or unnecessary events are filtered out at
the SAM, reducing network and computational overhead at the
CAMUS server. The event that survives the run-through is sent
to the Event Publisher. The event publisher delivers it to the
corresponding event queue at the CAMUS server. Any
subscriber to the queue will be received it.

5. Implementation

The service oriented architecture of ATLAS is hosted on an
OSGi framework. The URC framework called CAMUS
(Context Aware Middleware for URC Systems) from ETRI on
the other hand runs outside OSGi and does not come with OSGi
based components. Hence, the main task of this integration
effort was to create a bridge between the two systems in a
manner which fully utilizes both, the plug-and-play features of
ATLAS and the context-aware backend provided by CAMUS.

5.1. Integration Process

The ATLAS Platform represents every sensor connected to it
as an OSGi service object. Regardless of a sensor’s type and
manufacturer, ATLAS provides a uniform interface (declared as
a Java interface called AtlasService) to every sensor. This
ensures that application developers are abstracted away from
low-level details and variations between different sensors and
can use a single set of high-level methods to access multiple
heterogeneous sensors.

The following source code is an example of interfaces
between ATLAS Development Environment and SAM which is
an interface specifying methods available for accessing sensors
via ATLAS. The source code depicts ‘InterlinkPressureSensor’
service for the service representation of the Force Sensing
Resistor based pressure sensor made by Interlink.

package org.sensorplatform.sensors.pressure;

import com.pervasa.atlas.dev.service.AtlasClient;

/** Interface Definition **/

public interface InterlinkPressureSensor

{

/** Poll Sensor to get reading (Pull)**/
public void getPressureReading(AtlasClient ac);

/** Ask Sensor to send stream of readings (Push) **/

public void subscribeToPressureData(AtlasClient ac);

/** Ask Sensor to stop sending stream of readings **/

public void unsubscribeFromPressureData( AtlasClient ac);

/** Get the system time when this sensor came online **/
public long getStartupTimeMillis();
}

The CAMUS is responsible for acquiring sensing information
from robots and environments, planning tasks based on the
current context and sending control messages to robots. The
Service Agent Manager (SAM) is the robot-side component of
CAMUS which sends a robot’s sensing data to the CAMUS
server and receives control commands from the CAMUS server.
It was decided to integrate by modifying SAM to become the
link between the two systems. First, SAM was ported to OSGi to
enable it to run as a bundle inside the service framework. The
OSGi version of SAM is split into two parts: The Service Agent
Loader component and data acquisition components. The data
acquisition components implement the AtlasService interface to
enable them to become ATLAS device bundles which can
represent hardware devices connected to the ATLAS Platform.

The following source code is an example of SAM running
inside of OSGi with SAs, as one of the ATLAS Device Service
Bundles, to activate the sensor service bundles, which is
dynamically executed when the sensor comes online. The
instance of this bundle is loaded on OSGi to act as its service
representation.

// Reference to the OSGi framework bundle context

private BundleContext context;
//Location of service bundle,
//ID of Atlas Node to which sensor is connected

String bundleLocation, nodeld = new String("");
/*Start this service (called by OSGi when bundle is installed)*/

public void start{BundleContext context) throws Exception

{
try

{
bundleLocation = (String)
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(context.getBundle().getHeaders()).get("Bundle-Location"); m.removeServiceAgent(1D);
StringTokenizer st = context.removeServiceListener(m_serviceListener);
new StringTokenizer(bundleLocation,"-"); //Clean up this sensor service
nodeld = st.nextToken(); m_service.close();
}catch(Exception e) }
{} )
//Start Atlas part of interface
[/Register Sensor as an Atlas Service in the OSGi Framework Hence, as shown in Fig. 6, SAM implements interfaces for
final String[] ¢ = { AtlasService.class.getName() }; both CAMUS and ATLAS and bridges the connection between
final Properties p = new Properties(); the two. Implementing the AtlasService interface enables SAM
p-put("Node-1d", nodeld); to become part of a sensor service. In our example below, SAM
this.context = context; components are present as part of a Pressure Sensor bundle,
m_service = new AtlasPressurelmpl(null, null); which enables them to be automatically loaded by ATLAS
context.registerService(c, m_service, p); whenever the hardware sensor is powered on.

//Log Error if service cannot be instantiated

iftm_service==mul) | | () () L
{

if (logger.isInfoEnabled()) ‘ CAMUS Server ‘
{ l Planet J
logger.info("start(BundleContext):  Not T l
Found L Planet T T T I
H : "m. Planet
InterlinkPressureSensor Service."); T Bundle Eant CO%negerh‘L'“:
} Event interpreter SAM PUbh’Sher MOHI?OéeWice E
i i Agent |
return; s,f;"e',ff Sensor : Invggantor ,
Loader Interpreter ! ;
} Listener :
//Start CAMUS part of interface
ServiceBeanInfo info = new . ' .
Buridle J| Buwdl Buridl
ServiceBeanInfo(ID, NAME, . Activator
SERVICE, SERVICE_PROVIDER, Atias Service-Oriented Middleware

SERVICE_PROVIDER_IMPL, Plug and Play Platform
null,m_ac, null);
< Physical Environment >

//Listen for Service Agent Loader bundle component of SAM

m_serviceListener = new SamBundleEventListener( context); - - -
Fig. 6. Integrating ATLAS with CAMUS

ServiceReference re=

context.getServiceReference{Maintainable.class.getName()); . ) . . .
This bundle on being loaded also establishes connection with

the Service Agent Loader and is able to send data to the
CAMUS server and receive commands from it.

Maintainable m = (Maintainable)context.getService(re);

//Add this sensor service as a service agent

m.addServiceAgent(info);

context.addServiceListener( 52.5 E )
.2. System Execution

After we implemented the URC platform with ATLAS
integration, we executed the system based on the service
scenario of adding/deleting sensors. We describe series of
ooperations of adding/deleting sensors on the URC platform as
shown in figure 7.

The whole process of adding/deleting sensors on the URC
platform can be described in the form of protocol including each
different phases. Here, we describe the protocol with entity, data
and data transfer with condition in narrative method.

m_serviceListener,"(objectClass=" +
Maintainable.class.getName() + "*)");
context.ungetService(re);
}
/* Called by OSGi framework when bundle is unloaded */
public void stop(BundleContext context) throws

Exception

{

ServiceReference re=
context.getServiceReference(Maintainable.class. getName());

//Remove this sensor service as an available service agent

Maintainable m = (Maintainable)context.getService(re);

294



Networked Robots using ATLAS Service—Oriented Architecture in the Smart Spaces

e
Cinstall & Start OSAM:

Register OSA to CAMUS Register SA B to OSAM]

Waiting Waiting

T
{ New sensors !
Query Atlas
Service Bundle

Y

-~ Yes ; L
@e&i}b—@ | Dtecting new bundle Detecting OSAM

— i
i -
nstalled SatSAB | |crateds Started |
No™ ' T
Download & A BExsiT =2 Register SA_B to OSAN
Install bundle ﬁ/ ki -
No !
Yes
<Install Done 7>

i i
Download & install SA B !

W

No
s Ye
TTERRR ) s —
~— —
No
ERROR

(Sensor Detached )—| DelsteAtlas SB_|--+{ Detecting Delete Alas SB |-+ End SA_B

Delete SA _Bin OSAM

| Afas (Atlas SB: Atlas Service Bundle)
[ ] OSGiLocal Station (OSAM: OSGi-based SAM)
[ SABundle {SA_B: SABundle)

Fig. 7. Operations of Adding/Deleting sensors on URC Platform

® Phase-1: New sensors attached to the URC platform

When users or service person are attaching sensors or
actuators to the URC platform, the URC platform will find new
devices are attached. Then, the URC platform queries the OSGi-
based SAM in the CAMUS server to find the appropriate
ATLAS service bundle.

® Phase-2: Query the ATLAS Service Bundle

OSGi-based SAM receives the query from the URC platform,
and then the SAM sends the query to the OSGi bundle
repository.

® Phase-3: Installing the ATLAS Service Bundle

If there is the bundle in the OSGi bundle repository, then, the
SAM initiates the bundle. Or if there is no bundle available in
the OSGi bundle repository, the SAM downloads and installs
the bundle from the external source.

® Phase-4: Installing the OSGi-based SAM (Manually)

For OSGi-based SAM service, the CAMUS server installs
and starts the OSGi-based SAM in the CAMUS server system.
When the CAMUS server starts the OSGi-based SAM, the
Listener module in the OSGi-based SAM listens and waits for
the signal from the URC platform.

® Phase-5: URC platform installs the new sensor’s bundle
When the URC platform installs the bundle, the URC
platform sends the signal to the CAMUS server. When the
Listener module in the OSGi-based SAM receives the sensed
data from the ATLAS platform, the SAM sends it to the
CAMUS server and waits for the response from the CAMUS
And when the CAMUS server sends the control
commands information, the SAM sends query of Service Agent

Server.

Bundle for the commands information.

® Phase-6: Installing the Service Agent bundle(actuators)

If there is the Service Agent Bundle, then, the OSGi-based
SAM installs the bundle for the actuators. If there is no bundle
available, the OSGi-based SAM downloads and installs the
Service Agent Bundle from the external source.

® Phase-7: Register Service Agent Bundle (Manually)

Along with adding the new sensors to the URC platform, the
developers program the Service Agent Bundle for the service
through actuators and register to the OSGi-based SAM manually.
And then, the Listener module in the SAM listens and waits for
the newly added sensors.

® Phase-8: Start the Service Agent Bundle

When the OSGi-based SAM, i.e., the Listener module,
receives commands information from the CAMUS server, the
OSGi-based SAM starts the Service Agent Bundle to the URC
platform where the appropriate actuator for the service is
connected to the ATLAS platform.

Figure 8 is the framework diagrams describing the simple
protocols with two different communication paths of sensing
and commands information in figure 7. As there are two
different communication paths in the framework, the ATLAS
platforms are able to communicate either with URC platform or
with CAMUS server.

OSGi-based SAM | SA

Planet Bundle SA Loader SABundle
! SAltecycle | ! Activator
“ (Commumcation}| | maragement)

»—' OSGi Service Manager :s!—l

Robot SAM

50 ©
—
‘f Event Interpreter ;

OSéi Framework
s dolelsiangianig v AR

Atlas Middleware

i ‘ Activator
OSCi Framework SB

Atlas Platform {~————————— (e (’”‘“‘”‘)

Fig. 8. Framework Diagrams of Adding/Deleting Sensors on
URC Platform

When a new device is deployed in the space, the plug-and-
play capability of ATLAS ensures that a service bundle
representing that sensor or actuator is automatically activated in
the OSGi framework. The service bundle also contains the data
acquisition components of SAM, which automatically seek out
the service agent loader using native OSGi calls. The Service
Agent Loader then registers this service to the CAMUS server
so that CAMUS tasks can use this service. Similarly, when an
existing device is removed from the space, the corresponding
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service bundle automatically expires and the service agent
loader on detecting this event un-registers them from the
CAMUS server.

The following source code is an example of service
implementation code of the sensor and contains methods which
bridge the ATLAS and CAMUS systemn to ensure data flows
seamlessly between them. The source code is a simple example
of programmable toolkit for URC applicatuion developer.

{

// Logger for this class
private static final Logger logger =
Logger.getLogger(AtlasPressurelmpl.class);
private volatile boolean m_isStarted,;
private volatile ServiceContext m_context;
private long startupTS;
public  AtlasPressurelmpl(ServiceContext  context,
Properties params)
{
m_context = context;
m_isStarted = false;

[/store properties associated with this sensor service

non

addProperty("measure-type", "pressure");
addProperty("data-type", "int");
startupTS = System.currentTimeMillis();
this.isSubscribe = false;
System.out.printIn("Subscribe pressure

sensor for

logging.");
//Ask Atlas node to start pushing data stream from sensor
subscribe(this);
}

/* Activate Service Bean for service agent */

public void activate()

m_isStarted=true;
if{lm_isStarted){
if (logger.isInfoEnabled()) {

logger.info(" AtlasPressure.startServiceBean():
Already Started");

else{
m_isStarted=true;
if (logger.isInfoEnabled()) {

logger.info(" AtlasPressure.startServiceBean():

Active");
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}

[* De-activate Service Bean for service agent */

public void deactivate() {
if{m_isStarted){

m_isStarted=false;

else{
if (logger.isInfoEnabled()) {

logger.info(" AtlasPressure.stopServiceBean():

Already Stopped");

The integration between the systems requires service bundles
to implement interfaces to both communicate with other services
in the ATLAS middleware, as well as SAM. The bundles run in
the OSGi framework, but also have the capabilities of regular
service agents.

The Service Agent Invocator allows the tasks at CAMUS
server to invoke methods at service agents. A key feature of the
Service Agent Invocator is supporting the asynchronous method
invocation. It takes parts in necessary scheduling and thread
managements in handling asynchronous invocation. The
Connection Monitor plays a key role in handling the
disconnection. It continuously monitors the connection to the
CAMUS appropriate actions for the

reconnection whenever it detects a disconnection.

server and takes

Any events raised by a service agent run through the Sensor
Interpreter in SAM. The sensor interpreter examines each event,
passing, dropping, refining, or aggregating them. Sometimes the
event interceptor inserts new events based on the event it
examines. By this way, any duplicated or unnecessary events are
filtered out at SAM, reducing network and computational
overhead at CAMUS server. The event that survives the run-
through is sent to the Event Publisher. The event publisher
delivers it to the corresponding event queue at CAMUS server.
Any subscriber to the queue then receives the event.

6. Conclusions

The integration between robots and smart spaces makes
robots more intelligent, and also makes a smart space more
interactive. However, the major difficulties in integrating the
two systems are due to heterogeneity and dynamicity.

Heterogeneity exists in the form of different sensors and
actuators, software platforms, communications, data formats and
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semantics. Dynamicity exists in the form of a rapidly changing
environment where devices enter and leave at various points in
time. In this paper, we proposed a four-layer architecture for
integrating robots and smart spaces which efficiently addresses
these difficulties. This architecture enables devices available ina
smart space to be represented as software services. It provides
applications with a homogeneous interface to heterogeneous
hardware, such as sensors and actuators deployed in the smart
space. Applications are automatically notified whenever new
devices are introduced into the space or existing devices leave
the space. Representing devices as services also allows easy
modification of existing applications to enable it to make use of
newly available devices. Finally, we discussed the integration of
URC with the ATLAS Platform, which implements this
architecture and provides better services, which enhances the
sentience of URC and improves physical interaction between the
smart space and the users.
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