Intuitionistic Fuzzy G-Equivalence Relations and G-Congruences on a Groupoid

Kul Hur, Keon Chang Lee and Pyung Ki Lim*

Professor of Wonkwang University, and Nanoscal Science and Technology Institute Research
Area: Fuzzy topology, Fuzzy Algebra, General Topology
Professor of Dongshin University Reasearch Area: Fuzzy Alebra, (Fuzzy) Analysis
Professor of Wonkwang University, and Nanoscale Science and Technology Institute Research
Area: Fuzzy Topolgy, Fuzzy Algebra, Dynamic Theory

Abstract

We investigate the images and preimages of intuitionistic fuzzy G-equivalence relations and G-congruences under product mappings.

Keywords and phrases: intuitionistic [resp. (λ, μ) - and G-]equivalence relation, product mapping.

0. Intro duction

As a generalization of fuzzy sets defined by Zadeh[15], the notion of intuitionistic fuzzy sets was introduced by Atanassov[1]. Recently, Çoker[4], Hur et al. [8], and Lee and Lee applied intuitionistic fuzzy sets to topology. Also, Banerjee and Basnet[2], and Hur et al.[6,7,10] applied to group theory using intuitionistic fuzzy sets. In particular, Hur et al.[9] applied intuitionistic fuzzy sets to topological group. In 1996, Bustince and Burillo[3] introduced the concept of intuitionistic fuzzy relations and studied some of its properties. In 2003, Deschrijver and Kerre[5] investigated some properties of the composition of intuitionistic fuzzy relations. Furthermore, Hur et al.[11-13] studied various properties of intuitionistic fuzzy relations and intuitionistic fuzzy congruences.

In this paper, we investigate the images and preimages of intuitionistic fuzzy G-equivalence relations and G-congruences under product mappings.

1. Preliminaries

In this section, we will list some concepts and results needed in the later sections.

For sets X, Y and $Z, f = (f_1, f_2) : X \to Y \times Z$ is called a *complex mapping* if $f_1 : X \to Y$ and $f_2 : X \to Z$ are mappings.

Throughout this paper, we will denote the unit interval as I and X, Y, Z, \cdots denote (ordinary) sets.

Definition 1.1[1,4]. Let X be a set. A complex mapping $A = (\mu_A, \nu_A) : X \to I \times I$ is called a *intuitionistic fuzzy set* (in short, IFS) in X if $\mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$, where the mappings $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of each $x \in X$ to A, respectively. In particular, 0_{\sim} and 1_{\sim} denote the *intuitionistic fuzzy empty set* and the *intuitionistic fuzzy whole set* in X defined by $0_{\sim}(x) = (0,1)$ and $1_{\sim}(x) = (1,0)$ for each $x \in X$, respectively.

We will denote the set of all the IFS_S in X as IFS(X).

Definition 1.2[1]. Let X be a nonempty set and let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be IFS_S on X. Then

- (1) $A \subset B$ iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- (2) A = B iff $A \subset B$ and $B \subset A$.
- (3) $A^c = (\nu_A, \mu_A)$.
- (4) $A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B).$

Definition 1.3[4]. Let $\{A_i\}_{i\in J}$ be an arbitrary family of IFS_S in X, where $A_i = (\mu_{A_i}, \nu_{A_i})$ for each $i \in J$. Then

Manuscript received Jun. 12, 2008; revised Aug. 30, 2008. 2000 Mathematics Subject Classification of AMS: 03E72, 04A72, 06B10. *This paper was supported by Wonkang Univwesity in 2007.

(a)
$$\bigcap A_i = (\bigwedge \mu_{A_i}, \bigvee \nu_{A_i}).$$

(b) $\bigcup A_i = (\bigvee \mu_{A_i}, \bigwedge \nu_{A_i}).$

Result 1.A[1, Corollary 2.8]. Let A, B, C, D be IFS_S in X. Then

- (1) $A \subset B$ and $C \subset D \Rightarrow A \cup C \subset B \cup D$ and $A \cap C \subset B \cap D$.
 - (2) $A \subset B$ and $A \subset C \Rightarrow A \subset B \cap C$.
 - (3) $A \subset B$ and $B \subset C \Rightarrow A \cup B \subset C$.
- (4) $A \subset B$ and $B \subset C \Rightarrow A \subset C$.
- (5) $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$.
- (6) $A \subset B \Rightarrow B^c \subset A^c$.
- $(7) (A^c)^c = A.$
- (8) $1_{\sim}^{c} = 0$, $0_{\sim}^{c} = 1_{\sim}$.

Definition 1.4[3]. Let X and Y be sets.

- (1) $R = (\mu_R, \nu_R)$ is called an *intuitionistic fuzzy relation* from X to Y if $R \in IFS(X \times Y)$.
- (2) $R = (\mu_R, \nu_R)$ is called an *intuitionistic fuzzy relation* (in short, *IFR*) on X if $R \in IFS(X \times X)$.

We will denote the set of all intuitionistic fuzzy relations on X as IFR(X).

Definition 1.5[5]. Let R be an intuitionistic fuzzy relation from X to Y and let H be an intuitionistic fuzzy relation from Y to Z. Then the *composition* $H \circ R$ of R and H is an intuitionistic fuzzy relation in $X \times Z$ defined as follows: For each $(x, z) \in X \times Z$,

$$\mu_{H \circ R}(x, z) = \bigvee_{y \in Y} [\mu_R(x, y) \wedge \mu_H(y, z)]$$

and

$$\nu_{H \circ R}(x, z) = \bigwedge_{y \in Y} [\nu_R(x, y) \vee \nu_H(y, z)].$$

Definition 1.6[3,5]. Let R be an intuitionistic fuzzy relation on a set X.

- (1) R is said to be intuitionistic fuzzy reflexive if for each $x \in X$, $\mu_R(x, x) = 1$ and $\nu_R(x, x) = 0$.
- (2) R is said to be intuitionistic fuzzy symmetric if for each $(x,y) \in X \times X$, $\mu_R(x,y) = \mu_R(y,x)$ and $\nu_R(x,y) = \nu_R(y,x)$.
- (3) R is said to be intuitionistic fuzzy transitive if $R \circ R \subset R$.
- (4) R is called an *intuitionistic fuzzy equivalence* relation on X (in short, IFER) if it is reflexive, symmetric and transitive.

We will denote the set of all intuitionistic fuzzy equivalence relations on X as IFE(X).

Result 1.B[13, Proposition 2.2(2)]. If R is an intuitionistic fuzzy G-preorder on a set X, then $R \circ R = R$.

Definition 1.7. Let R be an IFR on a set X and let $(\lambda, \mu) \in (0, 1] \times [0, 1)$. Then R is said to be:

- (1) (λ, μ) -reflexive if $R(a, a) = (\lambda, \mu)$, and $\mu_R(a, b) \le \lambda$ and $\nu_R(a, b) \ge \mu$ for any $a, b \in X$.
- (2) an intuitionistic fuzzy (λ, μ) -equivalence relation on X if it is (λ, μ) -reflexive, intuitionistic fuzzy symmetric and transitive.

We will denote the set of all intuitionistic fuzzy (λ, μ) -equivalence relations on X as $IFE_{(\lambda, \mu)}(X)$.

Definition 1.8[13]. Let R be an intuitionistic fuzzy relation on a set X. Then R is said to be G-reflexive if for any $x, y \in X$ with $x \neq y$

- (i) $\mu_R(x,x) > 0$ and $\nu_R(x,x) < 1$,
- (ii) $\mu_R(x,y) \leq \delta_1(R)$ and $\nu_R(x,y) \geq \delta_2(R)$, where $\delta_1(R) = \bigwedge_{t \in X} \mu_R(t,t)$ and $\delta_2(R) = \bigvee_{t \in X} \nu_R(t,t)$.

An intuitionistic fuzzy G-reflexive and transitive relation on X is called an *intuitionistic fuzzy* G-preorder on S. An intuitionistic fuzzy symmetric G-preorder on X is called an *intuitionistic fuzzy* G-equivalence relation on X. We will denote the set of all intuitionistic fuzzy G-equivalence relations on X as $IFE_G(X)$.

It is clear that if $(\lambda, \mu) = 1_{\sim}$, then intuitionistic fuzzy (λ, μ) -equivalence relation is an IFER and every intuitionistic fuzzy (λ, μ) -equivalence relation is a G-equivalence relation.

2. Images and preimages of intuitionistic fuzzy equivalence relations and congruences on a groupoid

Definition 2.1[9]. Let R be an intuitionistic fuzzy relation on a semigroup S.

- (1) R is said to be intuitionistic fuzzy left [resp. right] compatible if $\mu_R(x,y) \leq \mu_R(tx,ty)$ and $\nu_R(x,y) \geq \nu_R(tx,ty)$ [resp. $\mu_R(x,y) \leq \mu_R(xt,yt)$ and $\nu_R(x,y) \geq \nu_R(xt,yt)$] for any $x,y,t \in S$.
- (2) R is said to be intuitionistic fuzzy compatible if $\mu_R(x,y) \wedge \mu_R(a,b) \leq \mu_R(xa,yb)$ and $\nu_R(x,y) \vee \nu_R(a,b) \geq \nu_R(xa,yb)$ for any $x,y,a,b \in S$.
- (3) R is called an *intuitionistic fuzzy left congruence* [rest. *right congruence* and *congruence*] if it satisfies the following conditions:
- (i) It is an intuitionistic fuzzy equivalence relation.
- (ii) It is left compatible [resp. right compatible and compatible].

It is clear that R is compatible if and only if it is both left and right compatible.

We will denote the set of all ordinary congruences and the set of all intuitionistic fuzzy congruences on a semigroup S as C(S) and IFC(S) respectively.

Definition 2.2[4]. Let X and Y be nonempty sets and let $f: X \to Y$ be a mapping. Let $A = (\mu_A, \nu_A)$ be an IFS in X and $B = (\mu_B, \nu_B)$ be an IFS in Y. Then

(a) the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by:

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B)),$$
 where $f^{-1}(\mu_B) = \mu_B \circ f$.

(2) the *image* of A under f, denoted by f(A), is the IFS in Y defined by:

$$f(A) = (f(\mu_A), f(\nu_A))$$

where for each $y \in Y$

$$f(\mu_A)(y) = \begin{cases} \bigvee_{x \in f^{-1}(y)} \mu_A(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{if } f^{-1}(y) = \emptyset, \end{cases}$$

and

$$f(\nu_A)(y) = \begin{cases} \bigwedge_{x \in f^{-1}(y)} \nu_A(x) & \text{if} \quad f^{-1}(y) \neq \emptyset, \\ 1 & \text{if} \quad f^{-1}(y) = \emptyset. \end{cases}$$

For sets X_0, X_1, Y_0 and Y_1 , let $f_0: X_0 \to Y_0$ and $f_1:$ $X_1 \to Y_1$ be mappings. Then $g: X_0 \times X_1 \to Y_0 \times Y_1$ is called the *product-mapping* of f_0 and f_1 if $g(x_0, x_1) =$ $(f_0(x_0), f_1(x_1))$ for each $(x_0, x_1) \in X_0 \times X_1$. In this case, we write $g = f_0 \times f_1$.

In particular, for a mapping $f: X \to Y$, we denote the product mapping $f \times f : X \times X \to Y \times Y$ as f^2 .

Proposition 2.3. Let R be an intuitionistic fuzzy compatible relation on a groupoid S and let D be a groupoid. If $f: D \to S$ is a groupoid homomorphism, then $f^{-1^2}(R)$ is an intuitionistic fuzzy compatible relation on D, where $f^{-1^2} = (f \times f)^{-1}$.

Proof. It is clear that $f^{-1^2}(R) \in IFR(D)$. Let $a, b, c, d \in D$. Then

$$\begin{split} \mu_{f^{-1^2}(R)}(ac,bd) &= \mu_R((f\times f)(ac,bd)) \\ &= \mu_R(f(ac),f(bd)) \\ &= \mu_R(f(a)f(c),f(b)f(d)) \text{ (Since } f \\ &\text{ is a groupoid homomorphism)} \\ &\geq \mu_R(f(a),f(b)) \wedge \mu_R(f(c),f(d)) \\ &\text{ (Since } R \text{ is intuitionistic fuzzy } \\ &\text{ compatible)} \\ &= \mu_R(f\times f)(a,b) \wedge \mu_R(f\times f)(c,d) \\ &= \mu_{f^{-1^2}(R)}(a,b) \wedge \mu_{f^{-1^2}(R)}(c,d) \end{split}$$

and

$$\begin{split} \nu_{f^{-1^2}(R)}(ac,bd) &= \nu_R(f(ac),f(bd)) \\ &= \nu_R(f(a)f(c),f(b)f(d)) \\ &\leq \nu_R(f(a),f(b)) \vee \nu_R(f(c),f(d)) \\ &= \nu_{f^{-1^2}(R)}(a,b) \vee \nu_{f^{-1^2}(R)}(c,d). \end{split}$$

Hence $f^{-1^2}(R)$ is an intuitionistic fuzzy compatible relation on D.

Proposition 2.4. Let R be an intuitionistic fuzzy relation on a groupoid D and let S be a groupoid. If $f:D\to S$ is a groupoid homomorphism, then $f^2(R)$ is an intuitionistic fuzzy compatible relation on S.

It is clear that $f^2(R) \in IFR(S)$. Let Proof. $u, v, w, r \in S$.

Case(i):
$$f^{-12}(u,v) = \emptyset$$
 or $f^{-12}(w,r) = \emptyset$. Then $f^2(R)(u,v) = (0,1)$ or $f^2(R)(w,r) = (0,1)$. Thus $\mu_{f^2(R)}(uw,vr) \ge 0 = \mu_{f^2(R)}(u,v) \wedge \mu_{f^2(R)}(w,r)$ and

 $\nu_{f^2(R)}(uw,vr) \leq 1 = \nu_{f^2(R)}(u,v) \vee \nu_{f^2(R)}(w,r).$ $\operatorname{Case}(\mathrm{ii}): \operatorname{Suppose} \ f^{-1^2}(u,v) \neq \emptyset \ \operatorname{and} \ f^{-1^2}(w,r) \neq \emptyset$ $f(\mu_A)(y) = \begin{cases} \bigvee_{x \in f^{-1}(y)} \mu_A(x) & \text{if} \quad f^{-1}(y) \neq \emptyset, \\ 0 & \text{if} \quad f^{-1}(y) = \emptyset, \end{cases}$ $\mu_{f^2(R)}(uw,vr) = \bigvee_{(x,x') \in \mathcal{N}} \nu_{f^2(R)}(uw,vr) = \bigvee_$

$$= \bigvee_{(f(ac),f(bd))=(uw,vr)} \mu_R(ac,bd)$$

$$= \bigvee_{(f(a)f(c),f(b)f(d))=(uw,vr)} \mu_R(ac,bd)$$

$$= \bigvee_{(f(a)f(c),f(b)f(d))=(uw,vr)} \mu_R(ac,bd) \text{ (Since } f \text{ is a groupoid homo}$$

$$-\text{morphism})$$

$$\geq \bigvee_{(f(a),f(b))=(u,v),(f(c),f(d))=(w,r)} [\mu_R(a,b) \wedge \mu_R(c,d)] \text{ (Since } R \text{ is intuitionistic fuzzy compatible)}$$

$$= \{\bigvee_{(a,b)\in f^{-1^2}(u,v)} \mu_R(a,b)\} \wedge \{\bigvee_{(c,d)\in f^{-1^2}(w,r)} \mu_R(c,d)\}$$

 $=\mu_{f^2(R)}(u,v) \wedge \mu_{f^2(R)}(w,r)$

and

$$\begin{split} \nu_{f^{2}(R)}(uw,vr) &= \bigwedge_{(x,x')\in f^{-1^{2}}(uw,vr)} \nu_{R}(x,x') \\ &\leq \bigwedge_{(ac,bd)\in f^{-1^{2}}(uw,vr)} \nu_{R}(ac,bd) \\ &= \bigwedge_{(f(ac),f(bd))=(uw,vr)} \nu_{R}(ac,bd) \\ &= \bigwedge_{(f(a)f(c),f(b)f(d))=(uw,vr)} \nu_{R}(ac,bd) \\ &\leq \bigwedge_{(f(a),f(b))=(u,v),(f(c),f(d))=(w,r)} \\ &[\nu_{R}(a,b) \vee \nu_{R}(c,d)] \\ &= \{\bigwedge_{(a,b)\in f^{-1^{2}}(u,v)} \nu_{R}(a,b)\} \vee \\ &\{\bigwedge_{(c,d)\in f^{-1^{2}}(w,r)} \nu_{R}(c,d)\} \\ &= \nu_{f^{2}(R)}(u,v) \vee \nu_{f^{2}(R)}(w,r). \end{split}$$

Hence $f^2(R)$ is an intuitionistic fuzzy compatible relation on S.

Proposition 2.5. Let $f: X \to Y$ be a mapping. If R is an intuitionistic fuzzy (λ, μ) -equivalence relation on Y, then $f^{-1^2}(R)$ is an intuitionistic fuzzy (λ, μ) equivalence relation on X.

Proof. For each
$$a \in X$$
, let $f(a) = u$. Then $f^{-1^2}(R)(a, a) = (\mu_R(f^2(a, a)), \nu_R(f^2(a, a))$ $= (\mu_R(f(a), f(a)), \nu_R(f(a), f(a)))$ $= (\mu_R(u, u), \nu_R(u, u))$ $= (\lambda, \mu)$. (Since R is (λ, μ) -reflexive)

For any $a, b \in X$, let f(a) = u and f(b) = v. Since R is (λ, μ) - reflexive,

$$\mu_{f^{-1^2}(R)}(a,b) = \mu_R(f^2(a,b)) = \mu_R(f(a),f(b)) = \mu_R(u,v) \le \lambda$$

and

$$\nu_{f^{-1^2}(R)}(a,b) = \nu_R(f^2(a,b)) = \nu_R(f(a),f(b)) = \nu_R(u,v) \ge \mu.$$

Thus $f^{-1^2}(R)$ is (λ, μ) -reflexive. Moreover,

$$f^{-1^{2}}(R)(a,b) = (\mu_{R}(f^{2}(a,b)), \nu_{R}(f^{2}(a,b)))$$

$$= (\mu_{R}(f(a), f(b)), \nu_{R}(f(a), f(b)))$$

$$= (\mu_{R}(u,v), \nu_{R}(u,v)))$$

$$= (\mu_{R}(v,u), \nu_{R}(v,u)) \text{ (Since } R \text{ is intuitionistic fuzzy symmetric)}$$

$$= (\mu_{R}(f^{2}(a,b)), \nu_{R}(f^{2}(a,b)))$$

$$= f^{-1^{2}}(R)(b,a).$$

So $f^{-1^2}(R)$ is intuitionistic fuzzy symmetric. On the other hand,

$$\begin{split} \mu_{f^{-1^2(R)\circ f^{-1^2}(R)}}(a,b) &= \bigvee_{x \in X} [\mu_{f^{-1^2}(R)}(a,x) \land \\ & \mu_{f^{-1^2}(R)}(x,b)] \\ &= \bigvee_{x \in X} [\mu_R(f^2((a,x)) \land \\ & \mu_R(f^2(x,b))] \\ &= \bigvee_{x \in X} [\mu_R(f(a),f(x)) \land \\ & \mu_R(f(x),f(b))] \\ &= \bigvee_{x \in X} [\mu_R(u,t_x)) \land \\ & \mu_R(t_x,v))] \\ &\leq \bigvee_{w \in Y} [\mu_R(u,w) \land \mu_R(w,v)] \\ &= \mu_{R\circ R}(u,v) \\ &\leq \mu_R(u,v) \; (\text{Since R is intuitionistic fuzzy transitive}) \\ &= \mu_R(f^2(a,b)) \\ &= \mu_{f^{-1^2}(R)}(a,b) \end{split}$$

and

$$\nu_{f^{-1^{2}}(R)\circ f^{-1^{2}}(R)}(a,b) = \bigwedge_{x\in X} [\nu_{f^{-1^{2}}(R)}(a,x) \vee \nu_{f^{-1^{2}}(R)}(x,b)]$$

$$= \bigwedge_{x\in X} [\nu_{R}(f^{2}((a,x)) \vee \nu_{R}(f^{2}(x,b))]$$

$$= \bigwedge_{x\in X} [\nu_{R}(u,t_{x})) \vee \nu_{R}(t_{x},v)]$$

$$\geq \bigwedge_{w\in Y} [\nu_{R}(u,w) \vee \nu_{R}(w,v)]$$

$$= \nu_{R\circ R}(u,v)$$

$$\geq \nu_{R}(u,v)$$

$$= \nu_{R}(f^{2}(a,b))$$

$$= \nu_{f^{-1^{2}}(R)}(a,b).$$

Thus $f^{-1^2}(R)$ is intuitionistic fuzzy transitive. This completes the proof.

The following is the immediate result of Propositions 2.3 and 2.5.

Corollary 2.5. Let R be an intuitionistic fuzzy (λ, μ) -congruence on a groupoid S. If $f: D \to S$

is a groupoid homomorphism, then $f^{-1^2}(R)$ is an intuitionistic fuzzy (λ, μ) -congruence on D.

Definition 2.6. Let $f: X \to Y$ be a mapping and let $R \in IFR(X)$. Then R is said to be:

- (1) intuitionistic f-invariant if $f^2(a,b) = f^2(a_1,b_1)$ implies $R(a,b) = R(a_1,b_1)$.
- (2) weakly intuitionistic f-invariant if $f^2(a,b) = f^2(a_1,b)$ implies $R(a,b) = R(a_1,b)$.

It is clear that if R is intuitionistic f-invariant, then R is weakly intuitionistic f-invariant, but not conversely.

Example 2.6. Let $X = \{a, b, c, d\}$, $Y = \{x, y\}$ and let $f: X \to Y$ be the mapping defined as follows:

$$f(a) = f(b) = f(c) = x$$
 and $f(d) = y$.

Consider the intuitionistic fuzzy relation on X defined as follows:

R	a	b	c	<u>d</u>
			(r_3, s_3)	
b	(r_2, s_2)	(r_1,s_1)	(r_2,s_2)	(r_4,s_4)
c	(r_2,s_2)	(r_2,s_2)	(r_3,s_3)	(r_4,s_4)
d	(r_3, s_3)	(r_1,s_1)	(r_3,s_3)	$(r_1,s_1),$

where $r_i, s_i \in I$, $r_i + s_i \leq 1$ and $(r_i, s_i) \neq (r_j, s_j)$ for $i \neq j$. Then we can easily see that R is intuitionistic weakly f-invariant but not intuitionistic f-invariant.

Theorem 2.7. Let $f: X \to Y$ be a mapping. If R is an intuitionistic fuzzy weakly intuitionistic f-invariant symmetric relation on X with $R \circ R = R$, then R is intuitionistic f-invariant.

Proof. For any $a, a_1, b, b_1 \in X$ and any $u, v \in Y$, suppose $f^2(a, b) = f^2(a_1, b_1) = (u, v)$. Let $x \in X$. Then there exists a unique $t_x \in Y$ such that $f^2(x, x) = (t_x, t_x)$, $f^2(a, x) = (u, t_x) = f^2(a_1, x)$ and $f^2(x, b) = (t_x, v) = f^2(x, b_1)$. Since R is weakly intuitionistic f-invariant, $R(a, x) = R(a_1, x)$ and $R(x, b) = R(x, b_1)$. On the other hand,

$$\begin{split} R(a,b) &= (R \circ R)(a,b) \\ &= (\bigvee_{x \in X} [\mu_R(a,x) \wedge \mu_R(x,b)], \\ & \bigwedge_{x \in X} [\nu_R(a,x) \vee \nu_R(x,b)]) \\ &= (\bigvee_{x \in X} [\mu_R(a_1,x) \wedge \mu_R(x,b_1)], \\ & \bigwedge_{x \in X} [\nu_R(a_1,x) \vee \nu_R(x,b_1)]) \\ &= (\mu_{R \circ R}(a_1,b_1), \nu_{R \circ R}(a_1,b_1)) \\ &= R \circ R(a_1,b_1). \end{split}$$

Hence R is intuitionistic f-invariant.

The following is the immediate result of Result 1.B and Theorem 2.7.

Corollary 2.7. Let $f: X \to Y$ be a mapping. If R is an intuitionistic fuzzy (λ, μ) -equivalence (or G-equivalence) relation on X which is weakly intuitionistic f-invariant, then R is intuitionistic f-invariant.

Proposition 2.8. Let $f: X \to Y$ be a surjective mapping. If R is an intuitionistic fuzzy (λ, μ) -equivalence relation on X which is weekly intuitionistic f-invariant, then $f^2(R)$ is an intuitionistic fuzzy (λ, μ) -equivalence relation on Y.

Proof. Let $u \in Y$. Since f is a surjective mapping, there exists $a, a' \in X$ such that f(a) = u = f(a'). By Corollary 2.7, R is intuitionistic f-invariant. Then

Let $u, v \in Y$. Then there exist $a, b \in X$ such that $f^2(a, b) = (u, v)$ and $f^2(b, a) = (v, u)$. Then

$$\mu_{f^{2}(R)}(u, v) = \bigvee_{(x_{1}, x_{2}) \in f^{-1^{2}}(u, v)} \mu_{R}(x_{1}, x_{2})$$

$$= \bigvee_{f^{2}(x_{1}, x_{2}) = (u, v)} \mu_{R}(x_{1}, x_{2})$$

$$= \bigvee_{f^{2}(x_{1}, x_{2}) = f^{2}(a, b)} \mu_{R}(x_{1}, x_{2})$$

$$= \mu_{R}(a, b) \text{ (Since } R \text{ is intuitionistic}$$

$$f\text{-invariant)}$$

$$\leq \lambda \text{ (Since } R \text{ is } (\lambda, \mu)\text{-reflexive)}$$

and

$$\begin{split} \nu_{f^2(R)}(u,v) &= \bigwedge_{(x_1,x_2) \in f^{-1^2}(u,v)} \nu_R(x_1,x_2) \\ &= \bigwedge_{f^2(x_1,x_2) = (u,v)} \nu_R(x_1,x_2) \\ &= \bigwedge_{f^2(x_1,x_2) = f^2(a,b)} \nu_R(x_1,x_2) \\ &= \nu_R(a,b) \\ &\geq \mu. \end{split}$$

So $f^2(R)$ is (λ, μ) -reflexive. Moreover, $f^2(R)$ is intuitionistic fuzzy symmetric.

Let $x \in X$. Then there exists a unique $t_x \in Y$ such that $f^2(a,x) = (u,t_x), f^2(x,b) = (t_x,v)$ and $f^2(x,x) = (t_x,t_x)$. Thus

$$\mu_{f^2(R)}(u,v) = \mu_R(a,b) \text{ (Since } R \text{ is intuitionistic } f-\text{invariant)}$$

$$\geq \mu_{R\circ R}(a,b) \text{ (Since } R \text{ is intuitionistic } f-\text{uzzy transitive)}$$

fuzzy transitive)
$$= \bigvee_{x \in X} [\mu_R(a, x) \wedge \mu_R(x, b)]$$

$$= \bigvee_{x \in X} [\mu_{f^2(R)}(u, t_x) \wedge \mu_{f^2(R)}(t_x, v)]$$
(Since R is intuitionistic f -invariant)
$$= \bigvee_{w \in Y} [\mu_{f^2(R)}(u, w) \wedge \mu_{f^2(R)}(w, v)]$$

$$= \bigvee_{f^2(R) \circ f^2(R)} (u, v)$$

and

$$\nu_{f(R)}(u,v) = \nu_R(a,b)$$

$$\leq \nu_{R \circ R}(a, b) = \bigwedge_{x \in X} [\nu_R(a, x) \vee \nu_R(x, b)] = \bigwedge_{x \in X} [\nu_{f^2(R)}(u, t_x) \vee \nu_{f^2(R)}(t_x, v)] = \bigwedge_{w \in Y} [\nu_{f^2(R)}(u, w) \vee \nu_{f^2(R)}(w, v)] = \bigwedge_{f^2(R) \circ f^2(R)} (u, v).$$

So $f^2(R)$ is intuitionistic fuzzy transitive. This completes the proof.

The following is the immediate result of Proposition 2.10.

Corollary 2.8. Let $f: X \to Y$ be a bijective mapping. If R is an intuitionistic fuzzy (λ, μ) -equivalence relation on X, then $f^2(R)$ is an intuitionistic fuzzy (λ, μ) -equivalence relation on Y.

Definition 2.9. Let R be an IFR on a groupoid S. Then R is called an *intuitionistic fuzzy* (λ, μ) -congruence on S if it is a compatible intuitionistic fuzzy (λ, μ) -equivalence relation.

Combining Propositions 2.4 and 2.9, we have the following result.

Proposition 2.10. Let $f:D\to S$ be a groupoid epimorphism. If R is an intuitionistic fuzzy (λ,μ) -congruence on D which is weakly intuitionistic f-invariant, then $f^2(R)$ is an intuitionistic fuzzy (λ,μ) -congruence on S.

The following is the immediate result of Proposition 2.10.

Corollary 2.10. Let $f:D\to S$ be a groupoid isomorphism. If R is an intuitionistic fuzzy (λ,μ) -congruence on D, then $f^2(R)$ is an intuitionistic fuzzy (λ,μ) -congruence on S.

3. Images and preimages of intuitionistic fuzzy G-equivalence relations and G-congruences on a groupoid

Definition 3.1[10]. Let R be an IFR on a groupoid S. Then R is called an *intuitionistic fuzzy G-congruence* on S if it is a compatible intuitionistic fuzzy G-equivalence relation.

Proposition 3.2. Let $f: X \to Y$ be a surjective mapping. If R is an intuitionistic fuzzy G-equivalence relation on X which is weakly intuitionistic f-invariant, then $f^2(R)$ is an intuitionistic fuzzy G-equivalence relation on Y with $\delta(f^2(R)) = \delta(R)$, where $\delta(R) = (\delta_1(R), \delta_2(R))$.

Proof. Let $u \neq v \in Y$. Since f is a surjective mapping, there exist a', $a \neq b \in X$ such that f(a) = u = f(a') and f(b) = v. Then

$$\begin{split} \mu_{f^2(R)}(u,u) &= \bigvee_{(x,x') \in f^{-1^2}(u,u)} \mu_R(x,x') \\ &= \bigvee_{f^2(x,x') = f(a,a)} \mu_R(x,x') \\ &= \mu_R(a,a) \text{ (Since } R \text{ is intuitionistic} \\ &f\text{-invariant by Corollary 2.7)} \\ &> 0 \text{ (Since } R \text{ is } G\text{-reflexive)} \end{split}$$

and

$$\begin{array}{l} \nu_{f^{2}(R)}(u,u) = \bigwedge_{(x,x') \in f^{-1^{2}}(u,u)} \nu_{R}(x,x') \\ = \bigwedge_{f^{2}(x,x') = f(a,a)} \nu_{R}(x,x') \\ \leq \nu_{R}(a,a) \\ < 1. \end{array}$$

Also,

$$\mu_{f^{2}(R)}(u,v) = \bigvee_{(x,x')\in f^{-1^{2}}(u,v)} \mu_{R}(x,x')$$

$$= \bigvee_{f^{2}(x,x')=f(u,v)} \mu_{R}(x,x')$$

$$= \mu_{R}(a,b)(\text{Since } R \text{ is intuitionistic}$$

$$f\text{-invariant by Corollary 2.7})$$

$$\leq \delta_{1}(R) = \bigwedge_{x\in X} \mu_{R}(x,x) \text{ (Since } R \text{ is }$$

$$G\text{-reflexive})$$

$$= \bigwedge_{x\in X} \mu_{f^{2}(R)}(t_{x},t_{x})$$

$$= \bigwedge_{w\in Y} \mu_{f^{2}(R)}(w,w)$$

$$= \delta_{1}(f^{2}(R))$$

and

$$\nu_{f^{2}(R)}(u, v) = \bigwedge_{(x, x') \in f^{-1^{2}}(u, v)} \nu_{R}(x, x') \\
= \bigwedge_{f^{2}(x, x') = f(\mu, \nu)} \nu_{R}(x, x') \\
= \nu_{R}(a, b) \\
\ge \delta_{2}(R) = \bigvee_{x \in X} \nu_{R}(x, x) \\
= \bigvee_{x \in X} \nu_{f^{2}(R)}(t_{x}, t_{x}) \\
= \bigvee_{w \in Y} \nu_{f^{2}(R)}(w, w) \\
= \delta_{2}(f^{2}(R)).$$

Thus $f^2(R)$ is G-reflexive with $\delta(f^2(R)) = \delta(R)$. Intuitionistic fuzzy symmetry and transitivity of $f^2(R)$ can be proved, as shown in the proof of Proposition 2.10. This completes the proof.

The following is the immediate result of Proposition 3.2.

Corollary 3.2. Let $f: X \to Y$ be a bijective mapping. If R is an intuitionistic fuzzy G-equivalence relation on X, then $f^2(R)$ is an intuitionistic fuzzy G-equivalence relation on Y with $\delta^2(f(R)) = \delta(R)$.

The following can be deduced from Propositions 3.2 and 2.4.

Proposition 3.3. Let $f: D \to S$ be a groupoid epimorphism. If R is an intuitionistic fuzzy G-congruence on D which is weakly f-invariant, then $f^2(R)$ is an intuitionistic fuzzy G-congruence on S with $\delta(f^2(R)) = \delta(R)$.

The following is the immediate result of Proposition 3.3.

Corollary 3.3. Let $f: D \to S$ be a groupoid isomorphism. If R is an intuitionistic fuzzy G-congruence on D, then $f^2(R)$ is an intuitionistic fuzzy G-congruence on S with $\delta(f^2(R)) = \delta(R)$.

Definition 3.4. Let $R \in IFR(Y)$ and let $f: X \to Y$ be a mapping. Then R is said to be *intuitionistic* f-stable if $f^2(a,b) = (u,u)$ where $a \neq b \in X$ and $u \in Y$, implies that $\mu_R(f^2(a,b)) \leq \mu_R(f^2(x,x))$ and $\nu_R(f^2(a,b)) \geq \nu_R(f^2(x,x))$ for each $x \in X$.

Example 3.4. Let $X = \{a, b, c\}$ and let $Y = \{u, v, w, r\}$. Consider the mapping $f: X \to Y$ defined as follow: f(a) = f(c) = u and f(b) = v.

We define two complex mappings $R=(\mu_R,\nu_R),$ $H=(\mu_H,\nu_H): Y\times Y\to I\times I$ as follows: $R(u,u)=(\frac{1}{3},\frac{2}{3}),\ R(v,v)=R(w,w)=R(r,r)=(\frac{1}{2},\frac{1}{2}),$ $R(s,t)=(\frac{1}{4},\frac{1}{2})$ for each $s\neq t\in Y$

and

$$\begin{split} H(u,v) &= H(u,w) = H(v,v) = H(w,w) = (\frac{1}{3},\frac{2}{3}), \\ H(u,u) &= H(r,r) = (\frac{1}{4},\frac{2}{3}), \\ H(v,u) &= H(w,u) = H(v,w) = H(w,v) = \\ H(r,u) &= H(u,r) = H(v,r) \\ &= H(r,v) = H(w,r) = H(r,w) = (\frac{1}{5},\frac{1}{3}). \end{split}$$

Then

$$\mu_R(f^2(a,c)) = \mu_R(u,u) = \frac{1}{3} \le \mu_R(f^2(x,x))$$
 for each $x \in X$

and

$$\nu_R(f^2(a,c)) = \nu_R(u,u) = \frac{2}{3} \ge \nu_R(f^2(x,x))$$
 for each $x \in X$.

Also,

$$\mu_H(f^2(a,c)) = \mu_H(u,u) = \frac{1}{4} \le \mu_H(f^2(x,x))$$
 for each $x \in X$

and

$$\nu_H(f^2(a,c)) = \nu_H(u,u) = \frac{2}{3} \ge \nu_H(f^2(x,x))$$
 for each $x \in X$.

So R and H are intuitionistic f-stable. It may be noted that R is an intuitionistic fuzzy G-equivalence relation on Y, whereas H is not an intuitionistic fuzzy G-equivalence relation on Y.

Proposition 3.5. Let $f: X \to Y$ be a mapping and let R be an intuitionistic fuzzy G-equivalence relation on Y which is intuitionistic f-stable. Then $f^{-1^2}(R)$ is an intuitionistic fuzzy G-equivalence relation on X with $\delta_1(f^{-1^2}(R)) \ge \delta_1(R)$ and $\delta_2(f^{-1^2}(R)) \le \delta_2(R)$. Furthermore, if f is surjective, then $\delta(f^{-1^2}(R)) = \delta(R)$.

Proof. Let $a \in X$. Then

$$\mu_{f^{-1^2}(R)}(a, a) = \mu_R(f^2(a, a))$$

= $\mu_R(f(a), f(a))$
> 0 (Since R is G -reflexive)

and

$$\nu_{f^{-1^2}(R)}(a, a) = \nu_R(f^2(a, a))$$

$$= \nu_R(f(a), f(a))$$

$$< 1.$$

Let $a \neq b \in X$. Then there exist $u, v \in Y$ such that f(a) = u and f(b) = v.

Case(i): Suppose
$$u = v$$
. Then
$$\mu_{f^{-1^2}(R)}(a,b) = \mu_R(f^2(a,b))$$
$$= \mu_R(u,u)$$
$$\leq \mu_R(f^2(x,x)) \text{ for each } x \in X \text{ (Since } R \text{ is intuitionistic } f\text{-stable})$$
$$= \mu_{f^{-1^2}(R)}(x,x) \text{ for each } x \in X$$

and

$$\begin{array}{l} \nu_{f^{-1^2}(R)}(a,b) = \nu_R(f^2(a,b)) \\ = \nu_R(u,u) \\ \geq \nu_R(f^2(x,x)) \text{ for each } x \in X \\ = \nu_{f^{-1^2}(R)}(x,x) \text{ for each } x \in X. \\ \text{Case(ii)}: \text{ Suppose } u \neq v. \text{ Then} \end{array}$$

Case(ii): Suppose $u \neq v$. Then $\mu_{f^{-1^2}(R)}(a,b) = \mu_R(f^2(a,b))$ $= \mu_R(u,v)$ $\leq \delta_1(R)$ $= \bigwedge_{w \in Y} \mu_R(w,w) \text{ (Since } R \text{ is } G\text{-reflexive)}$ $\leq \bigwedge_{x \in X} \mu_R(f^2(x,x))$ $= \bigwedge_{x \in X} \mu_{f^{-1^2}(R)}(x,x)$ $= \delta_1(f^{-1^2}(R))$

and

$$\nu_{f^{-1^2}(R)}(a,b) = \nu_R(f^2(a,b))
= \nu_R(u,v)
\ge \delta_2(R) = \bigvee_{w \in Y} \nu_R(w,w)
\ge \bigvee_{x \in X} \nu_R(f^2(x,x))
= \bigvee_{x \in X} \nu_{f^{-1^2}(R)}(x,x)
= \delta_2(f^{-1^2}(R)).$$
In all, $f^{-1^2}(R)$ is G -reflexive with $\delta_1(f^{-1^2}(R)) \ge \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_{x \in X} (f^{-1^2}(R)) \le \sum_{x \in X} (R) = 1 \sum_$

In all, $f^{-1^2}(R)$ is G-reflexive with $\delta_1(f^{-1^2}(R)) \geq \delta_1(R)$ and $\delta_2(f^{-1^2}(R)) \leq \delta_2(R)$. As in the proof of Proposition 2.5, we can show that $f^{-1^2}(R)$ is intuitionistic fuzzy symmetric and transitive. Moreover, it is clear that if f is surjective, then $\delta(f^{-1^2}(R)) = \delta(R)$. This completes the proof.

The following is the immediate result of Proposition 3.5.

Corollary 3.5. Let $f: X \to Y$ be an injective mapping and let R be an intuitionistic fuzzy G-equivalence relation on Y. Then $f^{-1^2}(R)$ is an intuitionistic fuzzy G-equivalence relation on X with $\delta_1(f^{-1^2}(R)) \ge \delta_1(R)$ and $\delta_2(f^{-1^2}(R)) \le \delta_2(R)$. Furthermore, if f is surjective, then $\delta(f^{-1^2}(R)) = \delta(R)$.

The following can be deduced from Propositions 3.5 and 2.4.

Proposition 3.6. Let $f: D \to S$ be a groupoid homomorphism. If R is an intuitionistic fuzzy G-congruence on S which is intuitionistic f-stable, then $f^{-1^2}(R)$ is an intuitionistic fuzzy G-congruence on D with $\delta_1(f^{-1^2}(R)) \geq \delta_1(R)$ and $\delta_2(f^{-1^2}(R)) \leq \delta_2(R)$. Furthermore, if f is surjective, then $\delta(f^{-1^2}(R)) = \delta(R)$.

The following is the immediate result of Proposition 3.6.

Corollary 3.6. Let $f: D \to S$ be a groupoid monomorphism. If R is an intuitionistic fuzzy G-congruence on S, then $f^{-1^2}(R)$ is an intuitionistic fuzzy G-congruence on D with $\delta_1(f^{-1^2}(R)) \geq \delta_1(R)$ and $\delta_2(f^{-1^2}(R)) \leq \delta_2(R)$. Furthermore, if f is surjective, then $\delta(f^{-1^2}(R)) = \delta(R)$.

References

- 1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems **20**(1986), 87-96.
- B. Banerjee and D. K. Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math. 11(1)(2003), 139-155.
- 3. H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems 78(1996), 293-303.
- 4. D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997), 81-89.
- 5. G. Deschrijver and E. E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems **136**(2003), 333-361.
- K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy subgroupoids, Internat. J. Fuzzy Logic Intelligent Systems 3(1)(2003), 72-77.
- K. Hur, H. W. Kang and H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J. 25(2)(2003), 19-41.

- 8. K. Hur, J. H. Kim and J. H. Ryou, Intuitionistic fuzzy topological spaces, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. **11(3)**(2004), 243-265.
- 9. K. Hur, Y. B. Jun and J. H. Ryou, Intuitionistic fuzzy topological groups, Honam Math. J. **26(2)**(2004), 163-192.
- 10. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy cosets, Honam Math. J. **26(4)**(2004), 559-587.
- 11. K. Hur, S. Y. Jang and Y. S. Ahn, Intuitionistic fuzzy equivalence relations, Honam Math. J. **27(2)**(2005), 163-181.
- 12. K. Hur, H. J. Kim and D. H. Ryou, Intuitionistic fuzzy congruences, Far East J. Math. Sci. 17(1)(2005), 1-29.
- K. Hur, H. J. Kim and J. H. Ryou, Intuitionistic fuzzy G-congruences, Korea Fuzzy Logic and Intelligent System Sci. 17(1) (2007), 100-111.

- 14. S. J. Lee and E. P. Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. **37(1)**(2000), 63-76.
- 15. L. A. Zadeh, Fuzzy sets, Inform. and Control 8(1965), 338-353.

Kul Hur

Professor of Wonkwang University Research Area: Fuzzy Topology, Fuzzy Algebra, Hyperspace, Category Theory E-mail: kulhur@wonkwang.ac.kr

Keon Chang Lee

Professor of Dongshin University Reasearch Area: Fuzzy Alebra, Fuzzy Analysis E-mail: kclee@dsu.ac.kr

Pyung Ki Lim

Professor of Wonkwang University Research Area: Fuzzy Topology, Fuzzy Algebra, Dynamic Theory

E-mail: pklim@wonkwang.ac.kr