DOI QR코드

DOI QR Code

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon (Department of Parasitology and Catholic Institute of Parasitic Diseases, Catholic University of Korea, College of Medicine) ;
  • Ahn, Hye-Jin (Department of Parasitology and Catholic Institute of Parasitic Diseases, Catholic University of Korea, College of Medicine) ;
  • Ryu, Kyung-Ju (Department of Parasitology and Catholic Institute of Parasitic Diseases, Catholic University of Korea, College of Medicine) ;
  • Nam, Ho-Woo (Department of Parasitology and Catholic Institute of Parasitic Diseases, Catholic University of Korea, College of Medicine)
  • Published : 2008.12.31

Abstract

A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

Keywords

References

  1. Choi WY, Nam HW, Kwak NH, Huh W, Kim YR, Kang MW, Cho SY, Dubey JP. Foodborne outbreaks of human toxoplasmosis. J Infect Dis 1997; 175: 1280-1282 https://doi.org/10.1086/593702
  2. Magno RC, Straker LC, de Souza W, Attias M. Interrelations between the parasitophorous vacuole of Toxoplasma gondii and host cell organelles. Microsc Microanal 2005; 11: 166-174
  3. Morisaki JH, Heuser JE, Sibley LD. Invasion of Toxoplasma gondii occurs by active penetration of the host cells. J Cell Sci 1995; 108: 2457-2464
  4. Mordue DG, Hakansson S, Niesman I, Sibley LD. Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp Parasitol 1999; 92: 87-99 https://doi.org/10.1006/expr.1999.4412
  5. Martin AM, Liu T, Lynn BC, Sainai AP. The Toxoplasma gondii parasitophorous vacuole membrane: transactions across the border. J Eukaryotic Microbiol 2007; 54: 25-28 https://doi.org/10.1111/j.1550-7408.2006.00230.x
  6. Dluzewski AR, Fryer PR, Griffiths S, Wilson RJ, Gratzer WB. Red cell membrane protein distribution during malarial invasion. J Cell Sci 1989; 92: 691-699
  7. Ward GE, Miller LH, Dvorak JA. The origin of parasitophorous vacuole membrane lipids in malaria-infected erythrocytes. J Cell Sci 1993; 106: 237-248
  8. Suss-Toby E, Zimmerberg J, Ward GE. Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci USA 1996; 93: 8413-8418 https://doi.org/10.1073/pnas.93.16.8413
  9. Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F. Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 2006; 25: 3214-3222 https://doi.org/10.1038/sj.emboj.7601189
  10. Gupta N, Zahn MM, Coppens I, Joiner KA, Voelker DR. Selective disruption of phosphatidylcholine metabolism of the intracellular parasite Toxoplasma gondii arrests its growth. J Biol Chem 2005; 280: 16345-16353 https://doi.org/10.1074/jbc.M501523200
  11. Coppens I. Contribution of host lipids to Toxoplasma pathogenesis. Cell Microbiol 2006; 8: 1-9 https://doi.org/10.1111/j.1462-5822.2005.00647.x
  12. Coppens I, Dunn JD, Romano JD, PypaertM, Zhang H, Boothroyd JC, Joiner KA. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 2006; 125: 261-274 https://doi.org/10.1016/j.cell.2006.01.056
  13. Sinai AP, Joiner KA. The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol 2001; 154: 95-108 https://doi.org/10.1083/jcb.200101073
  14. Son ES, Nam HW. Detection and characterization of excretory/ secretory proteins from Toxoplasma gondii by monoclonal antibodies. Korean J Parasitol 2001; 39: 49-56 https://doi.org/10.3347/kjp.2001.39.1.49
  15. Henriquez FL, Nickdel MB, McLeod R, Lyons RE, Lyons K, Dubremetz JF, Grigg ME, Samuel BU, Roberts CW. Toxoplasma gondii dense granule protein 3 (GRA3) is a type I transmembrane protein that possesses a cytoplasmic dilysine (KKXX) endoplasmic reticulum (ER) retrieval motif. Parasitology 2005; 131: 169-179 https://doi.org/10.1017/S0031182005007559
  16. Bermudes D, Dubremetz JF, Achbrou A, Joiner KA. Cloning of a cDNA encoding the dense granule protein GRA3 from Toxoplasma gondii. Mol Biochem Parasitol 1994; 68: 247-257 https://doi.org/10.1016/0166-6851(94)90169-4
  17. Ahn HJ, Kim S, Kim HE, Nam HW. Interactions between secreted GRA proteins and host cell proteins across the parasitophorous vacuolar membrane in the parasitism of Toxoplasma gondii. Korean J Parasitol 2006; 44: 303-312 https://doi.org/10.3347/kjp.2006.44.4.303
  18. Sohn WM, Nam HW. Western blot analysis of stray cat sera against Toxoplasma gondii and the diagnostic availability of monoclonal antibodies in sandwich-ELISA. Korean J Parasitol 1999; 37: 249-256 https://doi.org/10.3347/kjp.1999.37.4.249
  19. Ahn HJ, Kim S, Nam HW. Host cell binding of GRA10, a novel, constitutively secreted dense granular protein from Toxoplasma gondii. Biochem Biophys Res Comm 2005; 331: 614-620 https://doi.org/10.1016/j.bbrc.2005.03.218
  20. Frohman MA, Dush MK, Martin GR. Rapid production of fulllength cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 1988; 85: 8998-9002 https://doi.org/10.1073/pnas.85.23.8998
  21. Fan Q, An L, Cui L. Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryotic Cell 2004; 3: 264-276 https://doi.org/10.1128/EC.3.2.264-276.2004
  22. Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 2000; 20: 3387-3395 https://doi.org/10.1128/MCB.20.10.3387-3395.2000
  23. Hoeck J, Woisetschlager M. Activation of Eotaxin-3/CCL26 gene expression in human dermal fibroblasts is mediated by STAT6. J Immunol 2001; 167: 3216-3222 https://doi.org/10.4049/jimmunol.167.6.3216
  24. Seeber, F. Consensus sequence of translational initiation sites from Toxoplasma gondii. Parasitol Res 1997; 83: 309-311 https://doi.org/10.1007/s004360050254
  25. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340: 783-795 https://doi.org/10.1016/j.jmb.2004.05.028
  26. Spiess M, Lodish HF. An internal signal sequence: the asialoglycoprotein receptor membrane anchor. Cell 1986; 44: 177-185 https://doi.org/10.1016/0092-8674(86)90496-4
  27. Do H, Falcone D, Lin J, Andrews DW, Johnson AE. The cotranslational integration of membrane proteins into the phospholipids bilayer is a multistep process. Cell 1996; 85: 369-378 https://doi.org/10.1016/S0092-8674(00)81115-0
  28. Lecordier L, Moleon-Borodowsky I, Dubremetz, JF, Tourvieille B, Mercier C, Deslee D, Capron A, Cesbron-Delauw MF. Characterization of a dense granule antigen of Toxoplasma gondii (GRA6) associated to the network of the parasitophorous vacuole. Mol Biochem Parasitol 1995; 70: 85-94 https://doi.org/10.1016/0166-6851(95)00010-X
  29. Mercier C, Adjogble KDZ, Daubener W, Cesbron-Delauw MF. Dense granule: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int J Parasitol 2005; 35: 829-849 https://doi.org/10.1016/j.ijpara.2005.03.011
  30. Fischer HG, Stachelhaus S, Sahm M, Meyer HE, Reichmann G. GRA7, an excretory 29 kDa Toxoplasma gondii dense granule antigen released by infected host cells. Mol Biochem Parasitol 1998; 91: 251-262 https://doi.org/10.1016/S0166-6851(97)00227-2
  31. Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72: 395-447 https://doi.org/10.1146/annurev.biochem.72.121801.161800
  32. Hoppe HC, Ngo HM, Yang M, Joiner KA. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nature Cell Biol 2000; 2: 449-456 https://doi.org/10.1038/35017090
  33. Hoppe HC, Joiner KA. Cytoplasmic tail motifs mediate endoplasmic reticulum localization and export of transmembrane reporters in the protozoan parasite Toxoplasma gondii. Cell Microbiol 2000; 2: 569-578 https://doi.org/10.1046/j.1462-5822.2000.00081.x
  34. Bram RJ, Crabtree GR. Calcium signaling in T cells stimulated by a cyclophilin B-binding protein. Nature 1994; 371: 355-358 https://doi.org/10.1038/371355a0
  35. Holloway MP, Bram RJ. Co-localization of calcium-modulating cyclophilin ligand with intracellular calcium pools. J Biol Chem 1998; 273: 16346-16350 https://doi.org/10.1074/jbc.273.26.16346

Cited by

  1. GRA Proteins of Toxoplasma gondii: Maintenance of Host-Parasite Interactions across the Parasitophorous Vacuolar Membrane vol.47, pp.suppl, 2008, https://doi.org/10.3347/kjp.2009.47.s.s29
  2. Transmembrane and Ubiquitin-Like Domain Containing 1 (Tmub1) Regulates Locomotor Activity and Wakefulness in Mice and Interacts with CAMLG vol.5, pp.6, 2008, https://doi.org/10.1371/journal.pone.0011261
  3. Toxoplasma gondii: Expression of GRA1 gene in endoplasmic reticulum promotes both growth and adherence and modulates intracellular calcium release in macrophages vol.125, pp.2, 2008, https://doi.org/10.1016/j.exppara.2010.01.010
  4. Interactions of pathogen‐containing compartments with the secretory pathway vol.14, pp.11, 2008, https://doi.org/10.1111/cmi.12000
  5. Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts vol.7, pp.2, 2008, https://doi.org/10.1371/journal.pone.0029998
  6. Toxoplasma gondii Actively Inhibits Neuronal Function in Chronically Infected Mice vol.7, pp.4, 2008, https://doi.org/10.1371/journal.pone.0035516
  7. Host Organelle Hijackers: a similarmodus operandiforToxoplasma gondiiandChlamydia trachomatis: co-infection model as a tool to investigate pathogenesis vol.69, pp.2, 2008, https://doi.org/10.1111/2049-632x.12057
  8. Phylogeny and virulence divergency analyses of Toxoplasma gondii isolates from China vol.7, pp.1, 2008, https://doi.org/10.1186/1756-3305-7-133
  9. High Expression of Water-Soluble Recombinant Antigenic Domains of Toxoplasma gondii Secretory Organelles vol.52, pp.4, 2014, https://doi.org/10.3347/kjp.2014.52.4.367
  10. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6 vol.211, pp.10, 2008, https://doi.org/10.1084/jem.20131272
  11. Toxoplasmosis and Epilepsy — Systematic Review and Meta Analysis vol.9, pp.2, 2008, https://doi.org/10.1371/journal.pntd.0003525
  12. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles vol.14, pp.5, 2008, https://doi.org/10.1128/ec.00262-14
  13. Variation detection based on next-generation sequencing of type Chinese 1 strains of Toxoplasma gondii with different virulence from China vol.16, pp.1, 2008, https://doi.org/10.1186/s12864-015-2106-z
  14. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics vol.143, pp.8, 2016, https://doi.org/10.1017/s0031182016000524
  15. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China vol.10, pp.1, 2008, https://doi.org/10.1186/s13071-017-2527-4
  16. The Toxoplasma gondii dense granule protein TgGRA3 interacts with host Golgi and dysregulates anterograde transport vol.8, pp.3, 2008, https://doi.org/10.1242/bio.039818
  17. The UPR sensor IRE1α promotes dendritic cell responses to control Toxoplasma gondii infection vol.22, pp.3, 2008, https://doi.org/10.15252/embr.201949617
  18. Manipulation of Host Cell Organelles by Intracellular Pathogens vol.22, pp.12, 2008, https://doi.org/10.3390/ijms22126484
  19. A Newly Discovered Dense Granule Protein 3 in Neospora caninum vol.66, pp.4, 2008, https://doi.org/10.1007/s11686-021-00402-7