Journal of Internet Computing and Services (인터넷정보학회논문지)
- Volume 9 Issue 6
- /
- Pages.27-35
- /
- 2008
- /
- 1598-0170(pISSN)
- /
- 2287-1136(eISSN)
Design and Evaluation of an Anomaly Detection Method based on Cross-Feature Analysis using Rough Sets for MANETs
모바일 애드 혹 망을 위한 러프 집합을 사용한 교차 특징 분석 기반 비정상 행위 탐지 방법의 설계 및 평가
- Published : 2008.12.31
Abstract
With the proliferation of wireless devices, mobile ad-hoc networking (MANETS) has become a very exciting and important technology. However, MANET is more vulnerable than wired networking. Existing security mechanisms designed for wired networks have to be redesigned in this new environment. In this paper, we discuss the problem of anomaly detection in MANET. The focus of our research is on techniques for automatically constructing anomaly detection models that are capable of detecting new or unseen attacks. We propose a new anomaly detection method for MANETs. The proposed method performs cross-feature analysis on the basis of Rough sets to capture the inter-feature correlation patterns in normal traffic. The performance of the proposed method is evaluated through a simulation. The results show that the performance of the proposed method is superior to the performance of Huang method that uses cross-feature based on the probability of feature attribute value. Accordingly, we know that the proposed method effectively detects anomalies.
무선 장치의 확산으로, 무선 애드 혹 망(MANETs, Mobile Ad-hoc NETworks)은 매우 흥미롭고 중요한 기술이 되고 있다. 그러나 MANET은 유선망 보다 더 견고하지 못하다. 유선망을 위하여 설계된 기존의 보안 메커니즘은 새로운 패러다임에서 재 설계되어야 한다. 본 논문에서, 우리는 MANET에서 비정상 행위 탐지 문제를 논의한다. 우리의 연구의 초점은 새로운 또는 알려지지 않은 공격을 탐지할 수 있는 비정상 행위 탐지 모델을 자동적으로 구축하는 기법에 있다. 제안하는 방법은 정상 트래픽에서 특징간 상관 관계 패턴을 포착하기 위하여 러프 집합에 기초한 교차 특징 분석을 수행한다. 제안하는 방법의 성능은 시뮬레이션을 통하여 평가되었다. 그 결과, 제안하는 방법의 성능이 특징 속성값의 확률에 기반 하는 교차 특징 분석을 사용하는 Huang의 방법 보다 성능이 우수함을 보였다. 따라서 제안하는 방법이 비정상 행위를 효율적으로 탐지한다는 것을 알 수 있었다.
Keywords