Effects of doping on the electrical conductivity and particle size in olivine type $LiFePO_4$ powders

올리빈형 $LiFePO_4$ 분말의 전기전도도와 입도 크기에 미치는 도핑의 영향

  • Bai, Jin-Tao (Battery Research Center, Korea Institute of Science & Technology) ;
  • Ha, Jung-Soo (School of Materials Science & Technology, An-dong National University) ;
  • Kim, Chang-Sam (Battery Research Center, Korea Institute of Science & Technology)
  • 백진도 (한국과학기술연구원, 이차전지연구센터) ;
  • 하정수 (안동대하교, 재료공학과) ;
  • 김창삼 (한국과학기술연구원, 이차전지연구센터)
  • Published : 2008.12.31

Abstract

To get a fine $LiFePO_4$ powder with high electrical conductivity, the influences of doping of aliovalent elements(Cr+B and Cr+Al) on electrical conductivity and of heat treatment conditions on particle size of the doped powders were studied. Two kinds of the doped powders $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$ and $LiFe_{0.065}Cr_{0.03}Al_{0.005}PO_4$ were synthesized using mechanochemical milling and subsequent heat treatment at $675{\sim}750^{\circ}C$ for $5{\sim}10\;h$. The doping enhanced grain growth and electrical conductivity. The electrical conductivity at $30^{\circ}C$ was $1{\times}10^{-8}S/cm$ in the doped with Cr and Al, and $5{\times}10^{-10}S/cm$ in the undoped one.

전기전도성이 우수하면서 입자 크기가 작은 $LiFePO_4$ 분말을 얻기 위해서, 이종원소(Cr+B 또는 Cr+Al) 도핑이 $LiFePO_4$의 전기전도도에 미치는 영향과 열처리 조건이 입자 크기에 미치는 영향에 대해서 조사하였다. 조성이 $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$ and $LiFe_{0.065}Cr_{0.03}Al_{0.005}PO_4$인 두 종류의 분말을 기계화학적 밀링법으로 혼합 후 $675{\sim}759^{\circ}C$에서 $5{\sim}10$시간 열처리하여 합성하였다. 이종원소 도핑은 입자성장을 촉진하였고 전기전도도를 높이는 효과가 있었다. $LiFe_{0.065}Cr_{0.03}Al_{0.005}PO_4$의 전기전도도는 $1{\times}10^{-8}S/cm$로 도핑하지 않은 것의 $5{\times}10^{-10}S/cm$보다 높았다.

Keywords

References

  1. S.Y. Chung, J.T. Bloking and Y.M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes", Nature Materials 1[10] (2002) 123 https://doi.org/10.1038/nmat732
  2. G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou and J.H. Ahn, "Physical and electrochemical properties of doped lithium iron phosphate electrodes", Electrochim. Acta 50 (2004) 443 https://doi.org/10.1016/j.electacta.2004.04.047
  3. J.F. Ni, H.H. Zhou, J.T. Chen and X.X. Zhang, "$LiFePO_4$ doped with ions prepared by co-precipitation method", Materials Letters 59 (2005) 2361 https://doi.org/10.1016/j.matlet.2005.02.080
  4. D. Wang, H. Li, S. Shi, X. Huang and L. Chen, "Improving the rate performance of $LiFePO_4$ by Fe-site doping", Electrochim. Acta 50 (2005) 2955 https://doi.org/10.1016/j.electacta.2004.11.045
  5. A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries", J. Electrochem. Soc. 144 (1997) 1188 https://doi.org/10.1149/1.1837571
  6. Z.P. Guo, S. Zhong, G.X. Wang, H.K. Liu and S.X. Dou, "Structure and electrochemical characteristics of $LiMn_{0.7}M_{0.3}O_2$ (M = Ti, V, Zn, Mo, Co, Mg, Cr)", J. Alloys Compd. 348 (2003) 231 https://doi.org/10.1016/S0925-8388(02)00805-8
  7. H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim and B.W. Cho, "Rate performance and structural change of Cr-doped $LiFePO_4$/C during cycling", Electrochim. Acta 53 (2008) 7946
  8. C. Brahima, A. Ringueda, E. Gourbaa, M. Cassira, A. Billardb and P. Briois, "Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering", J. Power Sources 156[1] (2006) 45 https://doi.org/10.1016/j.jpowsour.2005.08.017
  9. N.H. Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono and M. Graetzel, "Enhanced electrochemical performance of mesoparticulate $LiMnPO_4$ for lithium ion batteries", Electrochem. Solid-State Lett. 9[6] (2006) A277 https://doi.org/10.1149/1.2191432