DOI QR코드

DOI QR Code

간종양 방사선치료 시 토모테라피 메가볼트 CT를 이용한 치료 여백 평가

Treatment Margin Assessment using Mega-Voltage Computed Tomography of a Tomotherapy Unit in the Radiotherapy of a Liver Tumor

  • 유세환 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 성진실 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 이익재 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 금웅섭 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 전병철 (연세대학교 의과대학 연세암센터 방사선종양학교실)
  • You, Sei-Hwan (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System) ;
  • Seong, Jin-Sil (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System) ;
  • Lee, Ik-Jae (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System) ;
  • Koom, Woong-Sub (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System) ;
  • Jeon, Byeong-Chul (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System)
  • 발행 : 2008.12.31

초록

목 적: 토모테라피 영상유도장치인 MVCT (mega-voltage computed tomography) 영상을 이용하여 자유 호흡시 분할 치료 간 간조직의 위치변화 양상을 알아보고자 하였다. 대상 및 방법: 2006년 4월부터 2007년 8월까지 간종양에 토모테라피를 받은 환자 26 명을 대상으로 치료 시작 후 10회까지 매회 치료시의 MVCT 영상을 분석하였다. 1차적으로 골격 구조에 따라 셋업오차보정을 한 상태에서 2차원 직교좌표계 상에서 간조직 경계부위의 위치 변화를 치료계획 KVCT (Kilo-Voltage Computed Tomography)와 MVCT의 영상융합을 통해 비교하여 오차 정도를 파악하였다. 간종양의 위치 별 변화 양상을 보기 위하여 종양 위치를 Couinaud's proposal을 기준으로 1군(Segment 1), 2군(Segment 2, 3, 4), 3군(Segment 5, 6), 4군(Segment 7, 8)으로 나누어 각 군별 위치 변화 양상을 비교하였다. 결 과: MVCT를 통해 알아본 평균 셋업오차는 각각 $0.45{\pm}2.04\;mm$ (좌-우), $0.97{\pm}4.06\;mm$ (상-하), $8.38{\pm}4.67\;mm$ (전-후) 이었다. 2군에서 전방 바깥쪽으로 $2.80{\pm}1.73\;mm$, 좌방 안쪽으로 $2.23{\pm}1.37\;mm$ 이동하였고 4군에서는 전, 후, 좌, 우 각 방향으로 $-0.15{\pm}3.93\;mm$, $-3.15{\pm}6.58\;mm$, $-0.60{\pm}3.58\;mm$, $-4.50{\pm}5.35\;mm$ 이동하였다. 1, 2, 3군에서 후방으로의 위치 변화는 평균 1 mm 이내였다(각각 $0.07{\pm}0.9 \;mm$, $-0.07{\pm}1.38\;mm$, $0.50{\pm}0.47\;mm$). MVCT 값들의 적용 시 보이는 2군에서의 종양체적 감소는 위 독성을 증가시킬 것으로 생각되었다. 결 론: 분할치료 간 간조직의 위치 변화 양상은 각 군마다 편차가 있는 가운데 어느 정도 규칙적이었다. 호흡에 의한 간조직의 기하학적 변형은 segment 2, 3, 4에서 좌방 표적 체적의 감소를 가져오는 반면 segment 5, 6에서는 호흡에도 불구하고 안정적인 양상을 나타내었다. 따라서 자유 호흡 상태에서 간 좌엽에 대한 방사선치료 시 위에 대한 독성을 줄이기 위해 보다 세심한 접근이 필요하다.

Purpose: To identify the inter-fractional shift pattern and to assess an adequate treatment margin in the radiotherapy of a liver tumor using mega-voltage computed tomography (MVCT) of a tomotherapy unit. Materials and Methods: Twenty-six patients were treated for liver tumors by tomotherapy from April 2006 to August 2007. The MVCT images of each patient were analyzed from the $1^{st}$ to the $10^{th}$ fraction for the assessment of the daily liver shift by four groups based on Couinard's proposal. Daily setup errors were corrected by bony landmarks as a prerequisite. Subsequently, the anterior-, posterior-, right-, and left shifts of the liver edges were measured by maximum linear discrepancies between the kilo-voltage computed tomography (KVCT) image and MVCT image. All data were set in the 2-dimensional right angle coordinate system of the transverse section of each patient's body. Results: The liver boundary shift had different patterns for each group. In group II (segment 2, 3, and 4), the anterior mean shift was $2.80{\pm}1.73\;mm$ outwards, while the left mean shift was $2.23{\pm}1.37\;mm$ inwards. In group IV (segment 7 and 8), the anterior-, posterior-, right-, and left mean shifts were $0.15{\pm}3.93\;mm$ inwards, $3.15{\pm}6.58\;mm$ inwards, $0.60{\pm}3.58\;mm$ inwards, and $4.50{\pm}5.35\;mm$ inwards, respectively. The reduced volume in group II after MVCT reassessment might be a consequence of stomach toxicity. Conclusion: Inter-fractional liver shifts of each group based on Couinard's proposal were somewhat systematic despite certain variations observed in each patient. The geometrical deformation of the liver by respiratory movement can cause shrinkage in the left margins of liver. We recommend a more sophisticated approach in free-breathing mode when irradiating the left lobe of liver in order to avoid stomach toxicity.

키워드

참고문헌

  1. Herfarth KK, Debus J, Lohr F, et al. Stereotactic singledose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 2001;19:164-170 https://doi.org/10.1200/JCO.2001.19.1.164
  2. Baisden JM, Reish AG, Sheng K, Larner JM, Kavanagh BD, Read PW. Dose as a function of liver volume and planning target volume in helical tomotherapy, intensitymodulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis. Int J Radiat Oncol Biol Phys 2006;66:620-625 https://doi.org/10.1016/j.ijrobp.2006.05.034
  3. Balter JM, Brock KK, Lam KL, et al. Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors. Int J Radiat Oncol Biol Phys 2005;63:610-614 https://doi.org/10.1016/j.ijrobp.2005.05.014
  4. Brock KK, Hollister SJ, Dawson LA, Balter JM. Technical note. Creating a four-dimensional model of the liver using finite element analysis. Med Phys 2002;29:1403-1405 https://doi.org/10.1118/1.1485055
  5. Brock KK, McShan DL, Haken RT, Hollister SJ, Dawson LA, Balter JM. Inclusion of organ deformation in dose calculations. Med Phys 2003;30:290-295 https://doi.org/10.1118/1.1539039
  6. Brock KM, Balter JM, Dawson LA, Kessler ML, Meyer CR. Automated generation of a four-dimensional model of the liver using warping and mutual information. Med Phys 2003;30:1128-1133 https://doi.org/10.1118/1.1576781
  7. Brock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA. Accuracy of finite element model-based multi-organ deformable image registration. Med Phys 2005;32:1647-1659 https://doi.org/10.1118/1.1915012
  8. International Congress on Radiological Units Report 62. 1999
  9. Yan D, Lockman D, Brabbins D, Tyburski L, Martinez A. An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 2000;48:289-302 https://doi.org/10.1016/S0360-3016(00)00608-8
  10. Hodge W, Tome W, Jaradat HA, et al. Feasibility report of image guided stereotactic body radiotherapy (IG-SBRT) with tomotherapy for early stage medically inoperable lung cancer using extreme hypofractionation. Acta Oncologica 2006;45:890-896 https://doi.org/10.1080/02841860600907329
  11. Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 2003;56:89-105 https://doi.org/10.1016/S0360-3016(03)00090-7
  12. Forrest LJ, Mackie TR, Ruchala K, et al. The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int J Radiat Oncol Biol Phys 2006;60:1639-1644
  13. Ramsey CR, Langen KM, Kupeian PA, et al. A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys 2006;64:1237-1244
  14. Song WY, Chiu B, Bauman GS, et al. Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2006;65:595-607 https://doi.org/10.1016/j.ijrobp.2006.01.049
  15. Wulf J, Hadinger U, Oppitz U, Thiele W, Flentie M. Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 2001;177:645-655 https://doi.org/10.1007/PL00002379
  16. Langet KM, Jones DT. Organ motion and its management. Int J Radiat Oncol Biol Phys 2001;50:265-278 https://doi.org/10.1016/S0360-3016(01)01453-5
  17. Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44:911-919 https://doi.org/10.1016/S0360-3016(99)00056-5
  18. Rosenzweig KE, Yorke E, Amols H, et al. Tumor motion control in the treatment of non-small cell lung cancer. Cancer Invest 2005;23:129-133 https://doi.org/10.1081/CNV-200050445
  19. Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol 2004;14:91-100 https://doi.org/10.1053/j.semradonc.2003.10.005
  20. Keall PJ, Kini VR, Vedam SS, et al. Motion adaptive x-ray therapy: a feasibility study. Phys Med Biol 2001;46:1-10 https://doi.org/10.1088/0031-9155/46/1/301
  21. Neicu T, Shirato H, Seppenwoolde Y, et al. Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Phys Med Biol 2003;48:587-598 https://doi.org/10.1088/0031-9155/48/5/303
  22. Fuss M, Shi C, Papanikolaou N. Tomotherapeutic stereotactic body radiation therapy: techniques and comparison between modalities. Acta Oncologica 2006;45:953-960 https://doi.org/10.1080/02841860600897942
  23. Meeks SL, Harmon JF, Langen KM, Willoughby TR, Wagner TH, Kupelian PA. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys 2005;32:2673-2681 https://doi.org/10.1118/1.1990289
  24. Seong J, Park HC, Han KH, et al. Local radiotherapy for unresectable hepatocellular carcinoma patients who failed with transcatheter arterial chemoembolization. Int J Radiat Oncol Biol Phys 2000;47:1331-1335 https://doi.org/10.1016/S0360-3016(00)00519-8
  25. Park HC, Seong J, Han KH, Chon CY, Moon YM, Suh CO. Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2002;54:150-155
  26. Seong J, Park HC, Han KH, Chon CY. Clinical results and prognostic factors in radiotherapy for unresectable hepatocellular carcinoma: a retrospective study of 158 patients. Int J Radiat Oncol Biol Phys 2002;55:329-336
  27. Seong J, Park HC, Han KH, et al. Clinical results of 3- dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma in the cirrhotic patients. Hepatol Res 2003;27:30-35 https://doi.org/10.1016/S1386-6346(03)00162-1
  28. Shim SJ, Seong J, Lee IJ, Han KH, Chon CY, Ahn SH. Radiation-induced hepatic toxicity after radiotherapy combined with chemotherapy for hepatocellular carcinoma. Hepatol Res 2007;37:906-913 https://doi.org/10.1111/j.1872-034X.2007.00149.x

피인용 문헌

  1. An Evaluation of Inter-Fractional Set-Up Errors in Patients Treated with Distinct Immobilization Equipment for Varying Anatomical Regions vol.5, pp.2, 2008, https://doi.org/10.4236/ijmpcero.2016.52013