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Abstract—This  study describes design and
development techniques of estimation models for
process modeling. One case study is undertaken to
design a model using standard gas furnace data. Neural
networks (NN) and genetic programming (GP) are each
employed to model the crucial relationships between
input factors and output responses. In the case study,
two models were generated by using 70% training data
and evaluated by using 30% testing data for genetic
programming and neural network modeling. The model
performance was compared by using RMSE values,
which were calculated based on the model outputs. The
average RMSE for training and testing were 0.8925
(training) and 0.9951 (testing) for the NN model, and
0.707227 (training) and 0.673150 (testing) for the GP
model, respectively. As concern the results, the NN
model has a strong advantage in model training (using
the all data for training), and the GP model appears to
have an advantage in model testing (using the separated
data for training and testing). The performance
reproducibility of the GP model is good, so this
approach appears suitable for modeling physical
fabrication processes.

Index Terms—Gas furnace, modeling, estimation,
neural network, genetic programming.

L. INTRODUCTION

INTEREST on modeling has been increasing for a
long time in the several industries. Especially, to reduce
expense and labor in experiments, the modeling
techniques have been developed frequently in
engineering fields. Nowadays, the system models are
used for process optimization. Modeling types include
white, gray, and black box models. A modeling method
is determined according to the modeling purpose and the
modeling performance can be different corresponding to
the system feature. Thus, it is difficult to select the best
modeling method for the better performance among the
several methods. White box modeling such as
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mathematical and physical models shows the specific
result in modeling performance, so it still remain an open
question how to find the best modeling method among
many data-driven methods. In this study, results of
performance comparison are provided to evaluate both
typical data-driven methods.

In the past, mathematical, theoretical, and physical
methods have been actively applied to solar cell
modeling. In these studies, curve fitting methods such as
least square estimation were usually employed due to
their ease and convenience [1]-[4]. In other early
research, a statistical method was used. This approach
gave good performance with uncertain measurement data
[5]. In more recent research, soft computing methods
such as genetic algorithms, neural networks, and neuro-
fuzzy methods were broadly used in solar cell modeling.
Soft computing methods are advantageous because
detailed information and understanding of the system is
not necessary for modeling using these approaches [6],
[71.

Neural networks have been broadly applied for data
driven modeling. Using this technique, the modeling
results can be influenced significantly by the data
conditions. For a physical process, it is often expensive
and difficult to gather sufficient data to account for a
variety of input conditions. Under these circumstances,
it can be difficult to train accurate neural network
models due to insufficient training data. To address this
problem, a global method that has the ability to
construct a data-driven model using data of limited
quality and/or quantity is necessary. Genetic
programming (GP) was selected as the global modeling
method to be employed in this study. The performance
of GP has been applied and confirmed in several
application fields, including industrial, environmental,
biological, and others [8].

In this study, typical data-driven methods for
modeling applied broadly in several fields are
implemented for performance evaluation using
benchmark data such as gas furnace data. Parameter-
and structure-based modeling methods are typical
modeling types; therefore, the modeling performance
can be compared by using the both methods. Process
data used in this study are a benchmark data, which
have been used in many studies, that is, gas furnace
data. The process data include the non-linear feature for
modeling performance.

The GP approach is a structural method that is less
influenced by the characteristics and quality of data
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being modeled. Both the NN and GP methods were
applied to design and evaluate the performance of
models generated for gas furnace data from Box and
Jenkins [9]. It was determined that GP has
advantages in validation and reproducibility for this
application.

I1. DATA-DRIVEN MODELING
METHODS

Artificial neural networks originated in the
awareness that the process of computation in a human
brain is quite different from that of a traditional digital
computer. Neural networks also have the ability to
organize neurons and calculate specific arithmetic
problems faster than a digital computer [10], [11].
Neural networks have emerged as an alternative to
physical models and statistical methods. Artificial
neural networks possess many simple parallel
processing units (called “neurons”), interconnected in
such a way that knowledge is stored in the weight of
the connections between them. The activation level of a
neuron is determined by the weighted sum of its inputs,
filtered by an activation function. This architecture
endows the network with the ability to generalize with
an added degree of freedom not available in statistical
regression techniques.

In this study, neural networks were applied to model
the Box and Jenkins gas furnace data. Modeling was
performed for performance comparison between the
neural network and the genetic programming methods.

Genetic programming is a powerful method for
modeling. The output a genetic programming is another
computer program. In essence, this is the beginning of
computer programs that program themselves [12]-[14].
Genetic programming works best for several types of
problems. The first type is where there is no ideal
solution. For example, there is no single optimal solution
to driving a car. Some solutions drive safely at the
expense of time, while others drive faster with a safety
risk. Therefore, driving a car consists of making
compromises between speed and safety, as well as many
other variables. In this case, genetic programming will
find a solution that attempts to compromise and identify
the most efficient solution from a large list of variables.
Genetic programming is also useful in finding solutions
in which the variables are constantty changing. In the car
example, the GP might find one solution for a smooth
congcrete highway, while it will find a totally different
solution for a rough unpaved road.

A. Neural networks for modeling

Figure 1 depicts a feed-forward, multilayered neural
network. Individual layers in the network receive,
process, and transmit critical information regarding the
relationships between the input and output pairs [15]. In
the solar cell process model, the input layer of neurons
corresponds to the four adjustable input parameters that

were varied in the contact formation experiment. The
network also incorporates one or more “hidden” layers of
neurons, which can be viewed conceptually as
representing fundamental internal state variables of the
process being modeled.

Feed-forward neural networks used for semiconductor
process modeling are typically trained via the error back-
propagation algorithm, with a sigmoidal activation
function in each neuron. In this algorithm, the calculated
output is compared to the measured data, and the squared
difference between these two vectors determines the
system error. This error is minimized using the gradient
descent approach, which adjusts the network weights by
an amount proportional to the partial derivative of the
accumulated system error.

In process modeling, performance is influenced by
both the number of hidden layers and the number of
neurons in each layer [16]. In optimizing the neural
process models, the number of hidden layers, number of
hidden neurons, and ftraining tolerance were each
considered. These parameters were optimized iteratively
by minimizing the root-mean-squared error (RMSE).
The optimized neural network model had two hidden
layers with four neurons each, one input layer with four
neurons, and an output layer with a single neuron (a 4-4-
4-1 structure). The optimized model was established
using the Object-Oriented Neural Network Simulator
(ObOrNNS) software tool, which was developed by the
Intelligent Semiconductor Manufacturing group at the
Georgia Institute of Technology [17].

Passive Active
nodes nodes
Input Hidden Output

®  Weight
—— Connection

Threshold input

Fig. 1. Structure of the neural network [15].

B. Genetic programming for modeling

Genetic algorithms create a string of numbers that
represent the solution to a given problem. GP uses four
steps to solve problems, as shown in Figure 2.

1) Generate an initial population of random compositions
of the functions and terminals of the problem
(computer programs).

2) Execute each program in the population and assign
it a fitness value according to how well it solves the
problem.
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3) Create a new population of computer programs by
copying the best existing programs; creating new
computer programs by mutation; and creating new
computer programs by crossover (reproduction).

4) The best computer program that appeared in any
generation, the “best-so-far solution,” is designated
as the result [12]-[14].

(1) Functions and terminals

The terminal and function sets are important
components of genetic programming. They are defined
as follows:

* The terminal set T is a set of variable atoms
(sensors, detectors, state variables) or constant
atoms (numbers, Boolean values, constants)

» The function set F is a set of arithmetic operations,
mathematical functions, Boolean operations,
conditional operators, functions causing iteration,
functions causing recursion, or any other domain-
specific functions

These components play an important role in the
generation of trees in GP. In tree-based GP, we must
construct syntactically valid trees. The main parameter
for the initialization method is the maximum tree depth.
This parameter is used to restrict the size of the
initialized trees. Apart from the maximum tree depth
parameter the initialization function needs a set of
possible terminals and a set of possible internal nodes
(non-terminals). For tree-based GP, there are two
common methods to construct trees: the grow method
and the full method [18]. The terminal set consists of
variables and constants. In this study, the function is
selected by the user, and the terminals are organized by
the data variables and numerical values that are
randomly selected within a specific range. Both the
terminal and function sets are changed by subsequent
iterative operations.

(2) Initial structures

GP restricts the selection of the label for the root of
the tree to the function set F (i.e., +, -, *, /, °2). In the
initial step of the algorithm, a hierarchical structure is
generated. This structure creates a random program tree
with the combined set, C=FUT. It is initially assumed
that combination C is defined by function set F {+, -, *, /,
72} and terminal set T consisting of variables and
constants.

The depth of the tree is defined as the length of the
longest non-back-tracking path from its root to its
endpoint. The depth is determined by initial random
population methods such as the full, grow, and ramped
half and half methods. The full method ensures that
every non-back-tracking path in the tree is equal to a
certain length. This is enforced by allowing only
function nodes to be selected for all depths up to a
maximum depth minus 1, and by selecting only
terminal nodes at the lowest level. With the grow

method, we create variable length paths by allowing a
function or terminal to be placed at any level up to a
maximum depth minus 1. In this study, the ramped
half-and-half method was applied. In the ramped half-
and-half method, we create trees using a variable depth
from 2 up to the maximum depth. For each depth of
tree, half are created using the full method, and the
other half are created using the grow method. This is a
mixed method that incorporates both the full and grows
methods. For each branch of the tree, half is created
using the full method, and the other half is created
using the grow method. The ramped half and half
method creates trees having a wide variety of sizes and
shapes [12].

(3) Fitness function

The most important concept of genetic programming
is the fitness function. The fitness function determines
how well a program is able to solve the problem. Fitness
is the driving force in Darwinian natural selection. Raw
fitness, standardized fitness, adjusted fitness, and
normalized fitness have been usually used in GP. In this
study, the following adjusted fitness function was
applied:

fitness = _ )
1+ error

Create Initial Random
Population
Termination Criterion
Satisfied?

No
Evaluate Fitness of Each
Individual in Population
Individuals=0

Y
Gen=Gen+1 |¢i| Individuals=M? ;

No
Select Genetic Operation
Probabilistically

Designate Result

reproduction mutation

Select One Individual Select Two Individual Select One Individual
Based on Fitness Based on Fitness Based on Fitness
l Perform Reproduction l l Perform Crossover | l Perform Mutation l

Copy intc New Population Insert Two Offspring into

Insert Mutant into New ‘
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Fig. 2. Genetic programming flowchart.

(4) Genetic programming operations

The primary GP operators are crossover, reproduction,
and mutation. Reproduction is just taking a copy of a
good individual and placing it in a new population.
Crossover takes two parents and creates two new
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children by selecting a random point in each parent and
swapping their sub-trees. Mutation randomly changes a
portion of an individual solution.

(a) Selection

The four selection methods that have been
employed in GP include fitness-proportionate
selection, rank selection, tournament selection, and
greedy over-selection. In this study, the greedy over-
selection method was used. Koza made use of greedy
over-selection [19] to reduce the number of
generations required for a GP run. In this approach,
individuals are selected based on their performance,
but this method biases the selection towards the
highest performers. All individuals are assessed, and
their fitness values are calculated.

(b) Crossover

Koza considers crossover and reproduction to be the
foremost genetic operations. Similar to its performance
under genetic algorithms, crossover operates on two
programs, and produces two child programs as shown in
Fig. 3. Two random nodes are selected from within each
program and then the resultant sub-trees are swapped,
generating two new programs.

Crossover Mutation

W
B L0 n-

Fig. 3. Crossover and mutation for GP.

(¢c) Reproduction

Reproduction is performed by simply copying a
selected member from the current generation to the
next generation. In genetic programming, when an
individual incestuously mates, the two resulting
offspring will, in general, be different. The Darwinian
reproduction operation [19] creates a tendency toward
convergence; however, in GP, the crossover operation
exerts a counterbalancing pressure away from
convergence.

(d) Mutation

With genetic algorithms, mutation is an important
operator that provides diversity in the population.
However, mutation is relatively unimportant in the GP
environment because the dynamic sizes and shapes of the
individuals in the population already provide diversity,
and as stated above, the population should not converge.

Thus, mutation can be considered as a variation on the
crossover operation.

III. PERFORMANCE COMPARISON
: NNS AND GP

In this section, the performance of GP is compared
to the performance of neural networks based on the
gas furnace data. In past research [9], the entire set of
gas furnace data was used for model training, and the
resulting model was compared to models produced by
other modeling methods. In this study, however, to
evaluate the model performance based on training and
testing conditions, the original gas furnace data were
separated to training and testing sets. The modeling
results were generated using the ObOrNNS neural
network tool developed and operated by the Intelligent
Semiconductor Manufacturing group at the Georgia
Institute of Technology [17].

Table 1. Modeling results of NN and GP using all data

Modeling Method Inputs Data RMSE
Neural Network y(t-1), u(+-4) | 292 0.3913
Genetic Programming | y(¢-1), u(z-4) | 292 0.6803
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A. Modeling results of NN and GP using all data

In time-series modeling, it is very important to select
the useful inputs for performance improvement. In this
study, model inputs were determined based on referring
the past research of gas furnace modeling. y(t-1) and u(t-
4) were selected for model inputs. The result of this
simulation is generated by using 292 data that are all
process data. In the traditional research, modeling
performance was compared by using all data that is the
same with this study. As shown in Table 1, the result of
the neural network model is better than that of the
genetic programming. This result is caused by the
modeling feature of the neural network, that is, neural
network modeling shows available results in model
training.

B. NN and GP modeling with a 7/3 data ratio

To evaluate and compare modeling performance,
neural networks and genetic programming were applied
to modeling the benchmark gas furnace data of Box and
Jenkins [9]). For a fair comparison, the data were
separated to training and testing sets under the same
conditions. In the simulation, the input variable, u(t),
" and the output variable, y(t), represent the gas flow rate
and the CO2 concentration, respectively. Two time-
series inputs were used for model generation [20]. Past
studies suggest that the best performance in gas furnace
modeling can be obtained by using both inputs.

In previous modeling of the gas furnace data, there
was no testing or evaluating result. Thus, the modeling
results that were derived by using the modeling’s own
tools could not be compared directly with those results.
In this simulation, the gas furnace data were separated
into training/testing sets with a 7/3 ratio. The training
data consisted of 205 data vectors, and the testing data
consisted of 87 vectors. The structure of the network that
was used had two input layer nodes, four nodes in the
first hidden layer, four nodes in the second hidden layer,
and one output layer node.

The modeling results are shown in Table 2. The GP
results were better than those obtained using the neural
network. The RMSE of the neural network model and
the genetic programming models are 0.8841 and 0.6731
[% CO2], respectively. Figure 5 graphically depicts the
training and testing results for the neural network and
the genetic programming models, respectively. The
upper graphs show the estimation results, and the lower
graphs show the absolute errors. As shown in this
figure, GP provides better performance in model
training and testing. We believe this result is caused by
the data selection method used in this simulation, where
the data for training and testing were separated
sequentially even though the original data was time-
based. This approach facilitates a more reasonable
estimation by GP because the training and testing errors
that were obtained by using GP and lower than those
obtained by using NNs.

Table 2. Results of the NN and GP using a 7:3 data ratio

Data Inputs Data NN GP
Training | y(¢-1), u(z-4) | 205 0.8336 0.7072
Testing | y(r-1), u(t-4) | 87 | 0.8841 | 0.6731
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Fig. 5. Result of GP using the separated data.

IV. CONCLUSIONS

This study was performed to compare process modeling
using neural networks and genetic programming using gas
furnace data. Modeling for such industrial processes is
challenging, as data collection can be costly. Moreover, the
reproducibility of the experimental data is a concem; that is,
experimental results are often not reproduced even though
the same process conditions are applied. Thus, neural
network-based models can be generated with small training
errors, but over-fitting can occur. To solve this problem,
genetic programming has been employed. GP modeling
was shown to be less susceptible to over-fitting given the
limited amount of available training data. Therefore, this
proposed approach appears suitable for semiconductor
process modeling.
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This study serves as a starting point for process
optimization. In future work, optimized process
conditions will be determined based on the process
models developed in this study.
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