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Abstract—Developing  highly cost-efficient and
reliable embedded systems demands hardware/software
co-design and co-simulation due to fast TTM and
verification issues. So, it is essential that Platform-Based
SoC design methodology be used for enhanced
reusability. This paper addresses a reusable SoC platform
based on OpenCores soft processor with reconfigurable
architectures for hardware/software codesign method-
ology. The platform includes a OpenRISC micro-
processor, some basic peripherals and WISHBONE bus
and it uses the set of development environment including
compiler, assembler, and debugger. The platform is very
flexible due to easy configuration through a system
configuration file and is reliable because all designed
SoC and IPs are verified in the various test environments.
Also the platform is prototyped using the Xilinx
Spartan3 FPGA development board and is implemented
to a single chip using the Magnachip cell library based
on 0.18um 1-poly 6-metal technology.

Index Terms—QOpenRISC, SoC, Platform, Co-design

L INTRODUCTION

As billion transistors system-on-chip (SoC) becomes
commonplace and design complexity continues to
increase, designers are faced with the daunting task of
meeting escalating design requirements in shrinking
time-to-market windows. Because of this, hardware/
software co-design and high level design reuse emerged
as a possible approach to boost design productivity [1].
There are mainly IP-based design method and platform-
based design method for SoC HW/SW co-design. In IP-
based SoC design, reusing methodology of complex pre-
defined design blocks, the system intellectual property
modules or virtual component applied to design a system,
electronic system engineers continuously are offered
ready-made or customizable functional cores which may
be added to designs [2].

But to use a pre-designed block, an engineer must
understand how it works and how it integrates with other
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components within the design. Also using a pre-designed
IP block cannot guarantee first cut success without extra
effort spent on verification and debugging. Because of
this difficulty, a platform-based design is issued and
several companies are using the platform-based design
approach as an effective strategy to address product
complexity and time-to-market at all levels. A platform-
based SoC design methodology permits reuse of key SoC
functional component. So, the platforms provide users
with ample room for product differentiation. Derivative
design can be accomplished quickly by adding just a few
IP components. Moreover, integrated architecture
minimizes verification uncertainties that greatly reduce
design effort and risk [3].

There are various SoC Platform environments. For
example, the Nexperia developed by Philips Inc. is
standard platform for video-centric multi media product
in company. Also the famous OMAP developed by
Texas Instrument Inc. is a typical SoC platform for
mobile solution and fully programmable platform such
as, Xilinx’s Virtex-II Pro and Altera’s Excalibur with
programmable logic is using for embedded applications.
This paper presents a synthesizable SoC platform which
is comprised of OpenCore’s popular IPs and a set of
software development environment built by us. The
platform is verified through various test environments
and is implemented to single die in range of 2.6mm?, and
can operate at 91MHz frequency.

The reminder of this paper is organized as follows. In
section 2, we will describe the platform-based SoC
design methodology. Section 3 exposes the SoC platform
architecture and introduces main components such as
processor and on-chip bus, also software development
environment. Section 4 shows the verification result of
all the part that composes the platform by applying it to
three level verification methods. In the section 5 the
platform implementation and its summary of
specification will be demonstrated. Finally, the
conclusion, result, and future works are presented.

I1. PLATFORM-BASED DESIGN

Platform-based design is an IP reuse strategy that
facilitates the creation and verification of designs
containing sophisticated IP from many different sources.
Platform-based design provides rapid creation and
verification of SoC designs by automating complex,
tedious, and error-prone design creation, IP integration,
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and verification steps. By automating the non-
differentiated design, design resources can devote their
time to value-added design [4]. Platform-based SoC
design allows an organization to develop a complete SoC
that is central to its product line. Once the SoC platform
is fully operational, derivative designs in which only a
few virtual components are added or dripped or modified
can be accomplished rapidly. Fig. 1 depicts a
methodology of platform-based SoC design.
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Fig. 1 Design methodology of platform based SoC

Generally, a platform-based SoC design goes through
two stages [S]. The first stage creates the platform. A
semiconductor house usually designs a platform for
SoCs. The platform design process considers the needs
of the application domain, including what is required by

relevant standards and other descriptions of requirements.

The second stage creates a product using the platform.
Systems houses with a particular product in mind can
then use the semiconductor house's platform as a starting
point for their chip design. This stage must take into
account the needs of the customer. Fig. 2 shows a typical
platform-based design flows.
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Fig. 2 Platform-based SoC design flows

First, a system specification describes significant
element and application requirements with C/C++ or
SystemC. With considering the flexibility, power,
performance, size and TTM, system analysis and
platform selection phase is a key step that selects a
possible platform. Refinement performs a high-level

development process. In this step, application is
partitioned into two groups, hardware and software,
based on functionalities, performances and constraints.
Finally, the design can be exported to a co-simulation
tool and other tools to finish synthesis and execution
code generation. In this design flow, design architecture
and specification has less flexible because of fixed
properties of platform selected and limitation of
available platform.

III. PROPOSED SOC PLATFORM

A. Platform Architecture

We have developed an OpenRISC-based SoC
platform that includes a 32bit RISC processor core
and the minimum set of elements needed to provide
basic functionality. These elements are WISHBONE
interconnect, UART, debug interface, GPIO,
VGA/LCD & DMA controller, and on-chip RAM.
Fig. 3 shows the block diagram of the proposed SoC
platform.
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Fig. 3 Proposed platform architecture

The UART controller provides serial communication
capabilities to the platform using an RS232 protocol. We
have chosen a 16550 compatible UART because it is the
most usual industry standard. Additionally, this UART
provides a basic method to access the microprocessor
and RTOS from host environment. This access is very
important for debugging and loading of new software
versions using serial communication.

The debug interface block performs various functions,
such as memory initialization, processor and peripherals
configuration, and system trace for debugging. Also, the
platform includes on-chip SRAM consisted of four 1K
byte block and VGA/LCD controller that support
capability for CRT and LCD display. The VGA/LCD
core supports a number of color modes, including 32bpp,
24bpp, 8bpp grayscale, and 8bpp pseudo color, and
GPIO module performs a general transfer between the
platform and external word[6][7][8]. The basic
communication channel of the platform is an OpenCores
WISHBONE on-chip bus. It has synchronous data and
address buses with multiple masters and slaves. An
arbiter decides in each moment which master takes
control of the bus.
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B. OpenRISC 1200 Microprocessor

We use the OR1200, a publicly available processor for
our development of SoC platform. This soft-core is
freely distributed under an LGPL license at OpenCores
website, and fits for composition SoC in many ways.
OpenRISC 1200, synthesizable core, is implemented
with Verilog HDL, and has high flexibility because all
configuration options for the processor are gathered
together into a single file containing numerous define
statements. A block diagram of the OR1200 architecture
is depicted in Fig. 4,
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Fig. 4 Overall architecture of OpenRISC

The OR1200 is a 32-bit scalar RISC with Harvard
micro architecture which has separated instruction/data
bus, 5 stage integer pipeline, virtual memory support
and basic DSP capabilities. OR1200 is intended for
embedded, portable and networking applications.

Instruction and data caches are present in the
microprocessor, and both default to 1-way direct-mapped
8KB caches. The memory management unit are
implemented for data and instruction MMU as 64-entry,
1-way direct-mapped translation look-aside buffer. Other
integrated functionality includes real-time debug, tick
timer, programmable interrupt controller, and power
management support [9][10]. The OR1200 communi-
cates with the WISHBONE interconnect.

C. WISHBONE On-chip Bus

The OpenRISC 1200 interfaces to memory and
peripherals via two WISHBONE compliant 32-bit
bus interface. The WISHBONE System-on-Chip
(80C) interconnect architecture for portable IP cores
is a portable interface for use with semiconductor IP
cores. The WISHBONE interface supports point-to-
point, shared bus, cross-bar switch and data flow
interconnection scheme. The multi-master and multi-
slave bus also supports both single data transfers and
burst transfers [11]. Block diagram of WISHBONE
interconnection is depicted in Fig. 5.

The WISHBONE architecture is consisted of 8-master
and slave side interfaces, round robin arbitration logic
and glue logic including multiplexer and address decoder.
In this architecture, multiple bus masters can use a
common shared bus when specific bus master is granted,

and then can transfer data to a selected slave.
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Fig. S Overall structure of WISHBONE interconnection

D. Development Environment

The distribution of the Open Source OpenRISC core
includes a set of development tools, comprising binary
utilities, C/C++ compiler, debugger, all of them ported
from GNU tools, and an instruction set simulator
developed by the OpenRISC project team [12]. Many
operating systems such as eCos, uClinux, Linux,
RTEMS, microC/OS-II have been ported to OpenRISC
architecture. SoC designers can use this integrated
development toolkit to develop and verify when software
program development, ISS-based software emulation,
executable program configuration and debugging are
performed for specific application. For platform software
development environment, GNU tool chain is built in
Linux 7.3 platform, and uClinux OS is ported to
OpenRISC architecture for developing device driver and
target software.

E. Design Flows

Fig. 6 shows a revised design flow for platform design
and application design using the platform. First, platform
architecture is defined, and power, size, operation condition,
functional analysis and estimation of performance are
performed for anticipated applications. In the platform
integration, existed and customizable IP are merged and
integrated to SoC platform with a number of design
methodologies, and verified through test environment,

Fig. 6 Revised platform-based design flow
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For application SoC, that is instantiated design of SoC
platform, platform reconfiguration can performed with
simple methodology using a file for configuration. For a
tiny application, non-used hardware block can removed,
and can add a number of IPs or modify the platform
architecture according to application complexity and design
require-ments. Application specific block is partitioned to
hardware and software part. Using hardware/sofiware co-
simulation, system functionality is verified and then
application hardware and software are integrated through a
hardware/software development environment built by us.
Hardware is implemented in FPGA, and software is loaded
and executed in the SoC inside FPGA.

IV. VERIFICATION

A. Module Simulation with HDL Simulator

At this level, functional testbench described with
Verilog HDL is used to verify design. Module level
verification tests major functionality of the block and
signaling between each module. For easy monitoring,
assertion and monitor code in Verilog HDL is used. In
this environment, we have checked activity and special
corner case using various test vectors, verified by
comparing the result of logic simulation with
commercial simulator. Most of the testbenchs are
described at the behavioral level, and various task and
function are used for test vector generation and
debugging of modules.

In our works, the Modelsim, RTL simulator, is used
for functional verification of platform. For generation of
test patterns, first cross-compile some test program
developed, and then executive file is created. After that
we can use the objcopy utility to generate the binary file
which is then transformed into hex file by bin2hex
program. Then the hex file can be read into On-chip
SRAM model in testbench, and simulated by simulator.

Fig. 7 shows result of simulation for OpenRISC
processor. The result indicates that instruction fetch
cycles of processor are performed during the three clock
periods in case cache memory was not implemented.
Also the instruction and data interface signals are
activated in accordance with WISHBONE specification.

Fig. 7 Result of simulation for OpenRISC processor.
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Serial communication program to test design is
compiled into OpenRISC execution code using the
OpenRISC GNU tool-chain. The binary image is loaded
into SRAM memory model in testbench, as needed by
the Verilog simulator. The task of testbench reads the
hexadecimal code and initializes the memory model.
Consequently, processor can execute instructions in
memory model by location and test the processor and
other hardware Fig. 8 shows simulation result for serial
communication function of SoC platform.

Fig. 8 Result of simulation for SoC platform serial
communication

The waveform of Fig.. £ shows that transmission data
is transferred from processor. to the UART port through
on-chip bus. In the waveform, one character ‘H’,
represented in ASCII value, is stored to FIFO (First In
First Out) buffer in the UART module, and is transferred
to txd pin in external output port of UART module.

Fig. 9 Result of simulation for SoC platform VGA driver

There are other simulation examples for SoC platform
peripherals, vga driver, testing. Fig. 9 shows a result of
simulation for vga driver functional operation and timing
generation. The simulation framework of vga driver is
similar to previous process. First cross-compile the vga
driver software with C image file converted from raw
file primary proceeds by raw2c program. And then an
executable file is generated with memory layout using
linker scripts file. After hex file created though bin2hex
utility, the hex file is likely loaded by Verilog user
defined tasks.
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B. ISS-GDB Software Emulation

ISS-based simulation is available before hardware
implementation is completed or there is mo physical
device. Designer can confirm architecture and instruction
level functionality of processor or test the user program
at firmware or middleware with the cycle-accuracy
architectural simulator. Using ISS developed by
OpenCores, it is possible to test software and hardware
IP through configuration of specified hardware. Fig. 10
shows the environment of ISS-based software simulation.
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Fig. 10 Test environment of architecture/instruction level

verification

All terminals are accomplished in a Linux 7.3 machine,
various peripheral IP and memory models is configured
to a specific system with processor model in ISS.
Orlksim, OpenCores architectural simulator, supports
OpenCores peripherals, such as VGA/LCD, UART,
DMA, Ethernet, general purpose 10, PS/2 interface and
so on. Orlksim also provides remote debugging through
a network socket with GNU debugger. GDB, Target
software debugger, loads image to the memory model of
ISS, and then run the program and debugs the operation.
Under the cross compiling environment, we first compile
C/C-++ program or assembler into executive file. Then
we can use orlksim to execute every instruction and
observe the change in memory and resisters. Figure 11
shows the architectural /instructional simulation result
using GDB-ISS connection.

For verification of the platform, abstract level of
configured hardware IP and software are integrated to
GDB-ISS simulation environment and the test program
is virtually executed in the SoC model. GDB remotely
control the SoC model through TCP/IP protocol.

Apngront k/meio-uat

2y 23 es sev

Fig. 11 Architectural/instructional level simulation using
GDB-ISS connection

The right side terminal is OpenRISC ISS and left is
GNU GDB. Both terminals are connected with TCP/IP
protocol which uses the same port definition.

The orlksim ISS is a C/C++ application that runs on
the host computer, to mimic the behavior of a program
running on the OpenRISC processor, and it is a generic
architecture simulator capable of emulating OpenRISC
based computer systems. There is a simulation example
using ISS which is configured with our SoC model. In
the simulation, the VGA peripheral can output images
like the following Fig. 12, showing uClinux booting on a
VGA console.

Terminal
window

Fig. 12 uClinux booting on ISS and a VGA console

C. HW/SW Co-verification with FPGA

At this level, platform hardware/software co-verified
using FPGA prototyping. Hardware of platform is
programmed into FPGA, some software programs for
running on the platform is loaded to on-chip ram in SoC
platform. In this verification environment, some test
programs (instruction level test) have been developed to
validate particular operations of the processor and
peripheral IPs. Fig. 13 shows FPGA prototyping

environment for system level verification.

Fig. 13 System level verification using FPGA prototyping

Completed SoC hardware platform is configured using
JTAG connector on FPGA development board and then
test program image cross-compiled with or1200 compiler
is downloaded for SoC HW/SW verification. GDB/DDD
debugger is used for program configuration and



International Journal of KIMICS, Vol. 6, No. 4, December 2008

381

debugging. Fig. 14 shows the serial test program and
executed result of the program. The program is running
on the OpenRISC 1200 based SoC inside FPGA.
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Fig. 14 Executed result of test program

Serial test program initializes the UART device, and
includes uart getc() and uart putc() functions. If the
uart_putc() function is called, UART of SoC platform
transmits a character transferred from processor.
Running the program, it shows the result of execution in
the hyper terminal of host PC.

V. SYSTEM IMPLEMENTATION

A. FPGA prototyping

XC3S1000 device in Xilinx Spartan 3 series has used
to implement SoC platform for FPGA prototyping. The
device is capable of using one million gate logic and
includes dedicated storage elements, Xilinx block RAM
[14]. In this work, FPGA development board is used
including Spartan 3 FPGA, external interface, and
peripheral devices, such as UART, PS2, VGA, etc. Table
1 shows the summary of implementation using Xilinx
Spartan 3 FPGA. The results show about 40% of logic
utilization and maximum performance of 32 MHz
frequency.

Table 1. Summary of SoC platform implementation in

FPGA
Device XC351000
Slices 3347 (43%)
LUTs 6034 (39%)
Minimum period 31.524 ns
Min setup time 7.757 ns
Min hold time 10.605 ns
Max frequency 31.722 MHz
B. ASIC implementation

RTL of proposed platform was synthesized with
Synopsys Design Compiler using the Magnachip 0.18
(mcell library under the worst-case condition and most
conservative wire-load model [15]. The system clock

frequency is approximately 91 MHz. The synthesized
netlist was passed through Synopsys Astro placement
and routing tool. Parasitic R, C values were extracted
using the Synopsys Star-RCXT from final design
implementation, and post-layout simulation was
performed using the Modelsim simulator.

Fig. 15 is the layout created from result of placement
and routing using Astro tool and Table 2 shows the
summary of final ASIC design. Memory macro blocks
are surrounded with hard blockage for on chip cache,
MMU, and on chip SRAM are placed on the side of core.
Marked part by A, B, C, D, E, and F indicates name in
which it use. 1/O pad of core is eleven, and that is system
clock and reset, UART, JTAG ports respectively. Rest
pads are power pad for supplying of core and 10 power.

Fig. 15 P&R result of SoC platform

Table 2 indicates the specification of SoC platform
layout. Completing the placement and routing, operation
frequency is 91 MHz that is met to 8 % lower constraint
than the synthesis level.

Table 2. Summary of SoC platform implementation in

ASIC
Technology Magnachip 0.18um CMOS
Cell Library MI8GM180S
Synthesis frequency 96 MHz
Routed frequency 91 MHz
Area 2.6mm?’ core-region out of 4mm®
Supply voltage 1.8V Core, 3.3 VIO
Memories 8K byte I/D cache, I/D MMU, 8K
on-chip SRAM

VI. SUMMARY AND CONCLUSIONS

In this paper a synthesizable SoC platform based on
Open-Source cores has been presented. The platform is
very flexible due to easy configuration through a system
configuration file and is reliable because all designed
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SoC and IPs are verified in the various test environments.
The platform has been implemented on FPGA
development board with Spartan 3 XC3S1000 FPGA.
OpenCores IPs are analyzed and verified at 3 level
verification environments and then integrated into our
platform. We have used our tool-chain to test our design
and develop software on the processor, and we have
obtained encouraging results. The system clock
frequency of this platform is about 32MHz in the FPGA
implementation and 91 MHz in ASIC.

As future work we plan to revise our platform in order
to develop more configurable, stable, and variable
applications. For accomplishment of this purpose,
various system IPs will be designed and integrated to our
SoC platform, such as AC97, PS2, USB 2.0, Ethernet
controller, H.264 codec. In addition to automation of
system reconfiguration process is also required.
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