An Efficient Updates Processing Using Labeling Scheme In Dynamic
Ordered XML Trees

Kang-woo Lee*

ok
=4

Fo

FH U XML ZA ol A Wl 8] st gAlel thd w2l & Sk B ol &R Ve M EZY A
Aol dojd w vir} wistd #olE HHE wrgdaly] fEAM WA XML Egj & Agste] AA =29 Hol&g
THA] Adbshe 2ol £ FAo] e sttt o] o] &3 & 7BAle] W3] dojubz F A4 XML EA ol A
= HGo] 42 ade gdel Aok old B & s day] A8 o] HAo] Ba gle HolEd rige
2z dH ol &d 7ol AEAT 2y Zake) g dlol B 7 B4V 4A1E W XML £41 E
29 == FAeAE Bk EAE neskA g3 Atk o]y # FAeA 2l Al XML #4 EgY
BE TS AFASIL A7 S stojol stz W v Eo] TRt Evh wekA £ = eAE XML 4 Ed
o) elol = T AAdel B2 glo] FAeAE FAT F = FAeA e e Zad I ol 7E S
AL,

ABSTRACT

Labeling schemes which don’t consider about frequent update in dynamic XML documents need relabeling process to reflect the changed
label information whenever the tree of XML document is update. There is disadvantage of considerable expenses in the dynamic XML
document which can occurs frequent update. To solve this problem, we suggest prime number labeling scheme that doesn’t need relabeling
process. However the prime number labeling scheme does not consider that it needs to update the sibling order of nodes in the XML tree of
document. This update process needs much costs because the most of the XML tree of document has to be relabeling and recalculation. In this
paper, we propose the prime number labeling scheme with sibling order value that can maintain the sibling order without relabeling or
recalculation the XML tree of documents.

7 E

%8 Prime Numbering Scheme, Dynamic XML, Labeling, XML Trees

QI
u
A2
zok
El
o
3H
mn
O
_|_0'|_
ic

H2 At 2008. 06. 09

S G A G =EA A12Y A12E

I. Introduction

The growing number of XML repositories on the World
Wide Web has provided the development of systems that
can store and query XML data efficiently. XPath and
XQuery are two main XML query languages that express the
structure of XML documents as linear paths or twig
patterns{1,2,3].

There are two main techniques to facilitate the XML
queries, viz. structural index and labeling scheme. The
structural index approaches, such as data-guide in the Lore
System and representative objects, can help to traverse
through the hierarchy of XML, but this traverse is costly.
The labeling scheme approaches, such as containment
scheme, prefix scheme and prime scheme, require smaller
storage space, yet they can efficiently determine the
ancestor-descendent and parent-child relationships between
any two elements of the XML. In this paper, we focus on the
labeling schemes[1].

If the XML is static, the existing labeling schemes can
efficiently process different queries. However if the XML is
dynamic, how to efficiently update the labels of the labeling
schemes becomes to an important research topic[4].

As we know, the elements in the XML are intrinsically
ordered, which is referred to as document order, i.e. the
element sequence in the XML document. The relative order
of two paragraphs in the XML document is important
because the order may influence the semantics, thus the
standard XML query language require the output of queries
to be in document order by default. Hence it is very
important to maintain the document order when the XML is
updated[5,6].

Some researches have been done to maintain the
document order in XML updating. However the update costs
of these approaches are still expensive[7,8]. Therefore in
this paper we focus on how to dramatically decrease the
update cost.

The rest of the paper is organized as follows. Section 2
reviews the related work and gives the motivation of this
paper. We propose our improved the prime numbeting

scheme with sibling-order value in Section 3. The most part

2220

of this paper is Section 3, in which we show that the scheme
proposed in this paper need not relabel any existing nodes
and need not re-calculate any values when updating an
ordered node. The experimental results are illustrated in
Section 4, and we conclude in Section 5.

II. Related works

In this section, we present three families of labeling
schemes, namely containment, prefix and prime.

2.1 Containment labeling scheme

The label of a node is assigned three values: [start, end,
level) (see Fig. 1(a).)[9]. For any two nodes « and v, u is an
ancestor of v iff u.start < v.start and v.end < u.end. In other
words, the interval of v is contained in the interval of u. Node
u is a parent of and v iff u is an ancestor of v and v.Jevel -
ulevel = 1.

While containment labeling schemes are effective in
supporting XML query processing, they cannot handle
dynamic updates. Insertion or deletion of nodes into a
labeled XML tree may result in a total relabeling of the
XML tree. This problem may be alleviated somewhere by
reserving enough space for anticipated insertions[10].
However, it is hard to predict the actual space
requirements. Thus, relabeling after updates is inevitable
for containment labeling schemes which are not suitable
for labeling XML documents in update-intensive
applications.

2.2 Prefix labeling scheme

The label of a node is that its parent’s label
concatenations its own label(seif _label)(see Fig. 1(b).)[4].
For any nodes # and v, u is an ancestor of v iff label(u) is a
prefix of label(v). Node u is a parent of node v iff label(v)
has no prefix when removing label(u) from the left side of
label(v).

DeweyID[10] labels the n™ child of a node with an
integer n, and this n should be concatenated to its parent’s
label and the delimiter (e.g. ’.”) to form the complete label of

i
%
Ay

2
:

find

o
2
X
=
o
ke
o
N

12
o
9,
oo
=
Wf
o
2
ro
4
ol
2
Rk

this child node. When a node is inserted, DeweyID needs to
relabel the sibling nodes after this inserted node and the
descendants of these siblings to maintain the document
order.

To date, none of the existing prefix labeling schemes can
support updates for ordered XML data at low cost. When a
new node is inserted into an ordered XML tree, all the
existing prefix labeling schemes require a relabeling of the
tree.

Descendants(Artitact)

: Painting, Sculpture Resource
Ancestors(Sculpture) [1, 18, 1] Containment
* Artifact, Resource 1 Prefix
Slblings(Museumn)
: Artist, Artifact
Museum —I Artifact
i10, 11, 2] [t12, 17,21
12 [13

Sculptor painting Sculpture
, 8, [13, 14, 3} {15, 186, 3}
131 132

T2 1. o2& T|¥ : a) 7|8 b) M|t
Fig. 1. Labeling Schemes : a) Containment b) Prefix

2.3 Prime labeling scheme

Wau et al[4] use Prime numbers to label XML trees. The
root node is labeled with “1”(integer). Based on the depth
first approach, each node is given a unique prime number
(self_label) and the label of each node is the product of its
parent node’s label (parent_label) and its own self label.
For any two nodes u and v, u is an ancestor of v iff label(v)
mod label(u)=0. Node u is a parent of node v iff
label(v)[self label(v) = label(u).

If an integer A has a prime factor which is not a prime
factor of another integer B, then B is not divisible by A. We
observe that in XML trees, if a node has a descendant which
is not a descendant of another node B, then A cannot be a
descendant of node B. Therefore, we can easily determine
the ancestor-descendant relationship by using the divisible
property of prime numbers. Fig. 2. illustrates the basic prime
labeling scheme.

M, [7]1=1+7

& 6 b

(3),[6]=2+3 (5).[10]=2+5 (11),(77]=7*11 \ (13),[91]=7+13
(172),[119]=7*17
() : seff-label

[1:label { self-label + parent-{abel)
Prime number list={ 2, 3,5, 7, 11, 13, 17, ...}

O 2 =2l W efoj2d
Fig 2. Prime number labeling

Prime labeling scheme uses the SC(Simultaneous
Congruence) values in Chinese Remainder Theorem to
determine the document order, i.e. SC mod self label =
document order. When the document order is changed,
Prime only needs to recalculate the SC values instead of
relabeling, but the recalculation is much more time
consuming[10].

Although prime labeling scheme supports order-sensitive
updates without relabeling the existing nodes, it needs to
recalculate the SC values based on the new ordering of
nodes. The re-calculation is very time consuming.

. Prime labeling scheme with
sibling-order value

In the section, we describe the proposed labeling scheme
that exploits sibling-order value.

3.1 Sibling-order value

The most important feature of proposed labeling scheme
is that we compare labels based on the lexicographical order.
The lexicographical order is a way to order words(or
strings). we can see their order in a phone book or an English
language dictionary. Here is a formal definition of
lexicographical order. If we have two words X=x;X2X3...X,
and y=y,y2ys..ym, Where x;’s any y;’s stand for letters of
these words, n is the length of x and m is the length of y, then

2221

FAFYHEAGS =22 4129 ARE

we say that:

xisequaltoy (x =y) when

x and y have the same length and all corresponding
letters match (example ababa = ababa),

x precedesy (x < y) when

either x is a proper prefix of y (i.e., each letter of x is
equal to the corresponding letter of y, and x is strictly
shorter than y; abc < abcaaa, but not ab < ab, because ab
is not a proper prefix of ab even though ab is a prefix of ab)

or x is not a prefix of y and the first from the left letter on
which x and y differ is smaller for x than it is for y (example:
acds < acdz, ¢ < d).

Given two binary strings ‘0011 and ‘01’, ‘0011° < ‘01
lexicographically because the comparison is from left to
right, and the 2nd bit of ‘0011” is 0", while the 2nd bit of
‘01”is ‘1°. Another example, ‘01’ < ‘0101’ because ‘01’ isa
prefix of ‘0101°.

3.2 Determination of sibling order value

3.2.1 Algorithm for determination of sibling order value

The sibling order value is to determine the SO value of a
new node by using the SO value of the previous node prior to
the inserted position when the new node is put into the XML
document tree. There are three kinds of the SO value in
accordance with the inserted position.

[Case 1] Insert a node before the first sibling node(see
Fig. 3.).

The Sibling Order(SO) value of the inserted node is that
the last bit of the first SO value is changed to “01”.

[Case 2] Insert a node at any position among two nodes -
left node and right node(see Fig. 4.).

If the size of left node greater than or equal to the size of
right node, the SO value of the inserted node is that SO value
of left node concatenates “1”. Otherwise, the SO value of the
inserted node is that we change the last bit of the SO value of

2222

the right node into “01”.

Function DetermineSiblingOrder_Pre(SOgr)

/] SOg : SO value of the right node

// SOx : SO value of the inserted node

begin
SOn = replace(lastbit(SOg), “01”);
ffreplace() : change the lastbit(SOg) to “01”
Nastbit() : fetch the last bit of SO value

end

End Function

a3 3. DetermineSiblingOrder_Pre &112|&
Fig. 3. DetermineSiblingOrder_Pre Algorithm

[Case 3] Insert a node after the last sibling node(see
Fig. 5.).

The Sibling Order(SO) value of the inserted node is that
we appended the SO value of left node “1”.

3.2.2 Prime Numbering method with sibling order value

The scheme for determination of parent-child
relationships in the XLM document tree is same to the
prime numbering method. The labeling scheme is to add
the SO value to the existing label for determining the
sibling order. Therefore, the structure of labeling can be
represent with [self label, SO]. In case b2 is inserted
between bl and b3, self_label is 17 (in figure 5, a given
prime number is followed by a next prime number in prime
number list) and 119 is multiplied by parent’s self_label(7).
The SO value is “01"” for SO, "0101” for SOg and "01011"
because of size(SOL) < size(SOr). Thus when b2 is
inserted, the label is [119, 01001]. The determination for
patent-child relationships can be understood by figuring
out that @ and b2 are in a parent-child relation because the
self label of @), 7, divided by the self label of b2, ’119’,
equals 0. The sibling order of bl, b2, and b3 is 01 < 01001
< 0l01.

B3 oA XML Eglol A glo] 88 7Y & o] 83 A& AU FF A

Function DetermineSiblingOrder_In(SOy, SOr)
/] SOL : SO value of left node
begin
if size(SOL) = size(SOg) then
/] size() : bit number of SO value
SO =S50 & "1,
/| & : concatenation operator
else
SO = replace(lastbit(SOg), “01");
end if
end
End Function

a3 4. DetermineSiblingOrder_in &12|&
Fig. 4. DetermineSiblingOrder_In Algorithm

Function DetermineSiblingOrder_Post(SO,)
begin
SOn =S80, & 17,
end
End Function

32! 5. DetermineSiblingOrder_Post £112|&
Fig. 5. DetermineSiblingOrder_Post Algorithm

The self_label value is used for the determination of
ancestor-descendent relationships while the SO value is used
for the determination of the sibling order. The following
illustrates the insertion and deletion algorithm for a new
node in the XML document tree which is represented with
these labels.

{2 011

[6, 1] [10. 0101]

{77, 01] 6? (91, 0101

[119, 01001]
I8 6 HHeAM A4S Ze zZ2iel gelgl Iy
Fig. 6. Prime numbering scheme with sibling
order value

If a node is required to delete, the corresponding node can
be complete simply by deleting it without recalculating or
relabeling the order information like an existing scheme.

IV. Experiments

Intel Pentium 2.0GHz for cpu, 2Gbytes for memory
and Window XP for operating system are required for the
experiment environment. The exercising language is
Java(JDK1.6.0). SAX 2.0.2(SAX2r3) is used for SML
Parser, and Access is for DBMS. The experimental data
is Shakespeare 2.0 that the Shakespeare’s plays are
described through XML and accessible in Web. The
experimental data are stored in database with a form of a
XML tree that is given labels by SAX parser in terms of
stack calculation.

The elements in the Shakespeare’s play(D8) are
order-sensitive. Here we study the update performance of
the Hamlet XML file in D8. The Update performance of
other XML files is similar. Hamlet has 5 acts, and we test
the following six cases: inserting an act before act[1],
inserting an act between act[1] and act[2], ..., inserting an
act between act[4] and act[5], and inserting an act after
act[5]. Fig. 8. shows the number of nodes for relabeling
when applying different schemes. Prefix labeling scheme
have the same number of nodes to relabel in all the six
cases. The Hamlet XML file has totally 6,636 nodes, but
prefix labeling scheme need to relabel 6595 nodes when
inserting an act before act[1]. The prime scheme has the
number of nodes necessary to recalculate the SC value[4].
The SC value is classified from three labels and
experimented. Three labels should be grouped. Because
classification of more than four labels may lead a large
number that cannot be stored with 64bit in Java. If three
labels are grouped, the number of nodes necessary to
recalculate in the prime scheme is 1/3 that of nodes

necessary to relabel in prefix labeling scheme.

2223

rok
S
4
ol

HEAS=E2] A2A #1235

struct {
int label;
char so[20];
IN; // 1abel of node
Prev_Sibling(N) : return previous sibling node of
the node N
Next_Sibling(N) : return the next sibling node of
the node N
get_Label() : return the new label
*
Function Insertion(N)
begin
N.label = getLabel();
if (Prev_Sibling(N) is not exist) then
next_node = Next_Sibling(N);
N.SO=DetermineSiblingOrder_Pre
(next_node.SO);
else if (Next_Sibling(N) is not exist) then
prev_node = Prev_Sibling(N);
N.SO =DetermineSiblingOrder_Post
(prev_node.so);
else
prev_node = Prev_Sibling(N);
next_node = Next_Sibling(N);
N.SO=DetermineSiblingOrder_In(prev_node.so,
next_node.so);

Fig. 9. shows the time for relabeling and recalculating the
SC value. The prime scheme (right axis) requires more time
than prefix labeling scheme (left axis). But the scheme
introduced in this paper no more requires any nodes for
relabeling or recalculating in all of the six cases.

0o 35 7000
5 % 30 4 6000
22 25 5000
§ z 20 4 4000 E=3Prefix scheme
z<] 1 3000 H Proposed scheme
6515 Prime scheme
g g 10 2000
EZ ¢ 4 1000
z o
0 0

1.2 3 4 5 6
Insertion Cases

o8 9 2leo]E- T AL BBt A7
Fig. 9. Processing time for relabeling or recalculation

V. Conclusion

The objective for designing labeling schemes for XML

:Eg :i trees is to allow quick determination of the relationships
end among the element nodes without actually accessing the
End Function XML files. Motivated by the need to efficiently support

queries and updates in ordered XML trees, we have
g 7. Al otyg|E developed a prime number labeling scheme with sibling
Fig. 7. Insertion Algorithm order value.

If an order-sensitive node is inserted in XML document,
700 updating or recalculating of labeling is required to sustain a
> 6000 document order like the existing labeling scheme. In oder to
ggﬁ i o P solve such a problem, this paper suggests that if an
52 o e~ Prive schere order-sensitive node is inserted into XML document tree, the

&3 =i proposed scherre . . . T :
532000 prime numbering method with sibling order value is an
£ 1000 alternative without relabeling or recalculating of labeling.

0

That is, the sibling order value is given not by using SC table

Insertion Case

for reducing the maintenance cost of SC table, and problems

L of prime numbering method are solved by the sibling order
a8 8 2lzolga T AL BRE =S &

Fig. 8. Number of nodes or values for relabeling
or recalculation demonstrated through experimenting both the existing and

value. The efficiency of the method proposed in this paper is

the proposed scheme.

2224

54 A XML 2204 o) Y1 e o 83 581 442

As topics for future researches, we may focus on how to
reduce the size of label and how to improve the existing
query processing scheme through using the method
proposed in this paper.

References

[1] V. Christophides, D. Plexousakis, M. Scholl and S.
Tourtounis, On Labeling Schemes for the Semantic
Web, In WWW, 2003.

[2] W3C Working Draft. XML Path Language (XPath)2.0,
November 2002.

[31 D. Chambetlin et. al, SQuery 1.0 : An XML Query
Language, W3C Working Draft, 2001.

[4] X. Wu, M. L. lee, and W. Hsu. A Prime Number
Labeling Scheme for Dynamic Ordered XML Trees. In
Proc. of ICDE, pp66-78, 2004.

[5]S. C. Haw, G. S. V. Radha Krishma Rao. Query
Optimization Techniques for XML Databases. IJIT
Vol.2 No. 2, pp97-104, 2003.

[6] 1. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, J. Naughton, Relational Databases for
Querying XML Documents: Limitations and
Opportunities, Proc. of the 25th VLDB Conf., 1999.

[7] P.Buneman, S. Davidson, W. Fan, C. Hara, W. C. Tan,
Keys for XML, In WWW, 2001.

[8] W. M. Shui, F. Lam, D. K. Fisher, R. K. Wong,
Querying and Maintaining Ordered XML Data using
Relational Databases, 16th Australasian Database
Conf., 2005.

[9] Q. Li, B. Moon, Indexing and Querying XML Data for
Regular Path Expressions, Proc. of the 27th VLDB
Conf., Roma, Italy, 2001.

[10] Changging Li, Tok Wang Ling, Min Hu, Efficient
Processing of Updates in Dynamic XML Data, http:
\ \ comp.nus.edu.sg.

[11] V. Christophides, G. Karvounarakis, D. Plexousakis,
Optimizing Semantic Web Queries using Labeling
Schemes, proceedings of WWW2003.

[12] Arthur M. Keller, Jeffrey D. Ullman, A Version

Numbering Scheme with a Useful Lexicographical
Order, http: \ \ cs.stanford.edu.

{13] Knuth, D.E.,, The Art of Computing Programming,
Vpl. 3, Sorting and Searching(2nd Edition).

AN

0| Z 2 (Kang-Woo Lee)

19979 29 st n A zFA 4
g 3}(o] gukAl
20023~ A et o) e 7 FE

Tt ma

B A Lok o] e ulo] 2, fHl A H 2B F Y

2225

