DOI QR코드

DOI QR Code

Bifidogenic Effects of Inuloprebiotics in Broiler Chickens

이눌로프리바이오틱스의 브로일러에 대한 비피더스균 활성 효과

  • 박병성 (강원대학교 동물생명공학과)
  • Published : 2008.12.30

Abstract

Recent studies have suggested that inulin might be utilized as a prebiotics for the promotion of antimicrobial growth, but a major obstacle to the use of inulin has been its low bifidogenic effects, which were initially observed in the ceca of broiler chickens. Inulin has some problems with related to denaturation in air and lowering passage rate from upper digestive tract to caecum. To solve this problems, a newly developed compound derived by microencapsulation, inuloprebiotics, was hypothesized to enrich cecal bifidobacterial populations and reduce the colonization levels of Salmonella in the ceca of broiler chickens. The in vitro growth of intestinal beneficial bacteria including Bifidobacterium longum, Bifidobacterium bifidum, Lactobacillus acidophilus, and Lactobacillus casei grew effectively on the medium containing inulin, whereas the growth of Streptococcus aureus and Clostridium perfringens was not differences among the treatment groups. Broiler chickens consumed chow diets containing 0.5%, 0.7% or 1.0% inuloprebiotics, or a control diet without inuloprebiotics supplementation. The chickens on the inuloprebioticssupplemented diets evidenced significantly higher cecal levels of Bifidobacterium and Lactobacillus species as compared with the chickens on the control diet. The population of cecal E. coli and Salmonella was specifically reduced as the result of treatment with inuloprebiotics. However, we noted no significant differences in Bifidobacterium species, E. coli and Salmonella counts among the inuloprebiotics treatment groups. The inuloprebiotics-supplemented diets induced an increase in the serum IgG concentration. The thymus index was significantly increased in the broiler chickens that consumed diets containing 0.7% or 1.0% inuloprebiotics, with the exception of the chickens consuming the diet supplemented with 0.5% inuloprebiotics. These results indicate that the inuloprebiotic preparations exerted an immune system-promoting effect or selectively enriched the cecal Bifidobacterium species populations in the broiler chickens, and also suggest that inuloprebiotics may prove useful as a stable natural antimicrobial agent.

브로일러에서 항균성장촉진을 위한 프리바이오틱스로서 이눌린의 활용가능성이 제시되었지만, 맹장에서 비피더스균의 활성효과를 개선할 필요가 있다. 이눌린은 공기 중 유통에 의한 변성 및 소화관 상부에서 맹장으로의 이동 시 낮은 통과율과 관련한 몇 가지 문제점이 있다. 이러한 문제를 해결하기 위해서 미세캡슐화, 이눌로프리바이오틱스가 브로일러의 맹장에서 비피도박테리아 균총을 증식시키고 살모넬라균의 집락을 낮출 수 있을 것이라는 가설을 세웠다. 국산 돼지감자로부터 추출한 이눌린을 미생물 배양한 후 대조구와 비교하였을 때, B. longum, B. bifidum, L. acidophilus, L. casei 균주의 성장률은 이눌린 첨가구가 높았으나, S. aureus, Cl. perfringens 균주의 증식은 처리구 간 차이가 없었다. 브로일러는 이눌로프리바이오틱스를 함유하지 않은 대조구 사료, 이눌로프리바이오틱스 0.5%, 이눌로프리바이오틱스 0.7%, 이눌로프리바이오틱스 1.0% 혼합사료를 섭취하였다. 이눌로프리바이오틱스를 섭취한 브로일러의 맹장에서 유익한 Bifidobacterium species는 대조구에 비해서 유의적으로 높았고, 유해한 미생물로 알려진 E. coli 와 Salmonella는 감소하였으나, 이눌로프리바이오틱스 처리구 사이에 있어서 Bifidobacterium species, E. coli 와 Salmonella 균수의 유의차는 없었다. 혈청 면역물질 IgG 함량은 이눌로프리바이오틱스 처리구가 대조구에 비해서 유의적으로 증가하였으나, 흉선지수는 이눌로프리바이오틱스 0.5% 첨가구를 제외한 이눌로프리바이오틱스 0.7%, 1.0% 처리구에서 유의적으로 증가하였다. 본 연구 결과는 돼지감자로부터 추출한 DP 26을 지닌 이눌린을 함유하는 이눌로프리바이오틱스를 브로일러 사료에 첨가, 급여하였을 때, 맹장에서 비피도 박테리아의 선택적인 증식 및 면역능력을 강화해 줌으로서, 유기축산을 위한 사료첨가용 항균성장촉진제로서 활용가능성을 시사해 준다.

Keywords

References

  1. Chung, C. H. and D. F. Day. 2004. Efficacy of Leuconostoc mesenteroides (ATCC 13146) isomaltooligosaccharides as a poultry prebiotic. Poult. Sci. 83, 1302-1306. https://doi.org/10.1093/ps/83.8.1302
  2. Dorotea, L. M. and D. N. M. Maris. 2005. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 66, 1476-1484. https://doi.org/10.1016/j.phytochem.2005.04.003
  3. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  4. Fernandez, F., M. Hinton and B. van Gils. 2002. Dietary mannan-oligosaccharides and their effect on chicken caecal microflora inrelation to Salmonella Eenteritidis colonization. Avian Pathol. 31, 49-58. https://doi.org/10.1080/03079450120106000
  5. Feter. R., H. Brickner and M. Botney, D. Cleven and A. Aranki. 1983. Mechanisms which control bacterial population in continuous flow culture models of mouse large intestinal flora. Infec. Immun. 39, 676-685.
  6. Flickinger, E. A. and G. C. Fahey Jr. 2002. Pet food and feed applications of inulin, oligofructose and other oligosaccharides. Brit. J. Nutr. 87, S297-S300. https://doi.org/10.1079/BJNBJN/2002552
  7. French, A. D. 1989. Chemical and physical properties of fructans. Plant Physiol. 134, 125-136. https://doi.org/10.1016/S0176-1617(89)80044-6
  8. Gibson, G. R., E. R. Bead., X.. Wang and J. H. Cummings. 1995. Selective stimulation of bifidobacteria in the human colon by oligofluctose and inulin. Gastroenterology 108, 975-982. https://doi.org/10.1016/0016-5085(95)90192-2
  9. Gibson, G. R. and X. Wang. 1994. Bifidogenic properties of different types of fructooligosaccharides. Food Microbiol. 11, 491-498. https://doi.org/10.1006/fmic.1994.1055
  10. Gong, J., R. J. Forster, H. Yu, J. R. Chambers, P. M. Sabour, R. Wheatcroft and S. Chen. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208, 1-7. https://doi.org/10.1111/j.1574-6968.2002.tb11051.x
  11. Isolauri, E., Y. Sutas, P. Kankaanpaa, H. Arvilommi and S. Salminen. 2001. Probiotics: Effects on immunity. Am. J. Clin. Nutr. 73 (Suppl. 2), 444S-450S. https://doi.org/10.1093/ajcn/73.2.444s
  12. Mockett, A. P. A. and M. E. Rose. 2007. Immune responses to eimeria: quantification of antibody isotypes to Eimeria tenella in chicken serum and bile by means of the ELISA. Parasite Immunology 8, 481-489. https://doi.org/10.1111/j.1365-3024.1986.tb00863.x
  13. Modler, H. W., R. C. Mckellar and M. Yaguchi. 1990. Bifidobacteria and bifidogenic factors. Can. Inst. Food. Sci. Technol. J. 23, 29-41. https://doi.org/10.1016/S0315-5463(90)70197-6
  14. Park, B. S. and D. H. Son. 2008. Manufacturing method of microencapsulated-inuloprebiotics as a resources of bioactive materials. Patent 2008-70316.
  15. Patterson, J. A. and K. M. Burkholder. 2003. Application of prebiotics in poultry production. Poult. Sci. 82, 627-631. https://doi.org/10.1093/ps/82.4.627
  16. Rada, V., D. Duskova, M. Marounek and J. Petr. 2001. Enrichment of Bifidobacteria in the hen caeca by dietary inulin. Folia Microbiol. 46, 73-75. https://doi.org/10.1007/BF02825891
  17. Rehman, H., P. Hellweg., D. Taras and J. Zentek. 2008. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poult. Sci. 87, 783-789. https://doi.org/10.3382/ps.2007-00271
  18. Rolfe, R. D. 2002. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130(2S Suppl.), 396S-402S.
  19. SAS Institute. 2001. User's manual, version 8.0. SAS Institiute Inc., Cary, NC.
  20. Tako, E., R. P. Glahn, R. M. Welch, X. Lei, K. Yasuda and D. D. Miller. 2008. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Brit. J. Nutr. 99, 472-480.
  21. Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 48, 61-65.
  22. Turnidge, J. 2004. Antibiotic use in animals-prejudices, perceptions and realities. J. Antimicrob. Chemother. 53, 26-27. https://doi.org/10.1093/jac/dkg493
  23. Wang, Y. W., C. J. Field and J. S. Sim. 2000. Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum immunoglobulin G concentration, and immune tissue development in chicks. Poult. Sci. 79, 1742-1748.
  24. Xu, Z. R., C. H. Hu and M. O. Wang. 2002. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 48, 83-89. https://doi.org/10.2323/jgam.48.83
  25. Zhang, W. F., D. F. Li., W. Q. Lu and G. F. Yi. 2002. Effects of isomalto-oligosaccharides on broiler performance and intestinal microflora. Poult. Sci. 82, 657-663.
  26. Zleessen, B., N. A. A. E. Elsayed, U. Loehren, W. Schroedl and M. Krueger. 2003. Jerusalem artichokes stimulate growth of broiler chickens and protect them against endotoxins and potential cecal pathogens. J. Food Protection 66, 2171-2175. https://doi.org/10.4315/0362-028X-66.11.2171

Cited by

  1. Effect of Feeding Cordyceps with Fly Pupa on Growth Performance in Broiler Chickens vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1541
  2. The use of inulin in poultry feeding: a review vol.100, pp.6, 2016, https://doi.org/10.1111/jpn.12484
  3. Effects of Dietary Inuloprebiotics on Egg Production and on the Microbial Ecology and Blood Lipid Profile of Laying Hens vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.880
  4. Bifidogenic Effects of the Oral Administration of Fly Maggot Extract on Organic Acid, Cecal Microorganisms, Thymus and Spleen Weights, and Blood Lipids in Rats vol.24, pp.7, 2014, https://doi.org/10.5352/JLS.2014.24.7.784
  5. Bifidogenic effect of grain larvae extract on serum lipid, glucose and intestinal microflora in rats vol.40, pp.3, 2015, https://doi.org/10.1007/s12038-015-9540-6
  6. Determination of Optimal Added-Levels of Inuloprebiotics for Promotion of Growing Performance in Broiler Chickens vol.21, pp.5, 2011, https://doi.org/10.5352/JLS.2011.21.5.684